MEM®6810 Engineering Systems Modeling and Simulation
TREAGHRES I E

Theory [Analysis

Lecture 4: Random Variate Generation

SHEN Haihui L7

Sino-US Global Logistics Institute
Shanghai Jiao Tong University

@A shenhaihui.github.io/teaching/mem6810f
¥ shenhaihui@sjtu.edu.cn

Spring 2023 (full-time)

%i%ﬁé’ﬁiﬁ'liﬁﬁﬂﬁ%%iﬁﬂﬁﬁ

X ELALY

SHANGHAI JIAO TONG UNIVERSITY

28]

https://shenhaihui.github.io/teaching/mem6810f/
https://www.sjtu.edu.cn/
http://www.sugli.sjtu.edu.cn/
https://creativecommons.org/licenses/by-sa/4.0/

@ Introduction

® Random Number Generation
» Definition
» Pseudo-Random Numbers
» Linear Congruential Generator
» More Sophisticated RNGs
» Tests for Random Numbers

©® Random Variate Generation
» Inverse-Transform Technique
» Acceptance-Rejection Technique
» Other Ad-Hoc Methods
» Generating Poisson Process

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

@ Introduction

SHEN Haihui MEM6810 Modeling and Simulation, Lec 4 Spring (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Introduction

e Random variable is a variable whose values are random and
depend on a probability distribution.

e E.g., normal, exponential, Poisson, etc.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Introduction

e Random variable is a variable whose values are random and
depend on a probability distribution.
e E.g., normal, exponential, Poisson, etc.

e Random variate is a particular outcome (i.e. observed
sample, realization) of a random variable.
e E.g., 5 random variates (outcomes) from a N'(0, 1) random
variable: 0.5377,1.8339, —2.2588, 0.8622, 0.3188.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Introduction

e Random variable is a variable whose values are random and
depend on a probability distribution.

e E.g., normal, exponential, Poisson, etc.

e Random variate is a particular outcome (i.e. observed
sample, realization) of a random variable.

e E.g., 5 random variates (outcomes) from a N'(0, 1) random
variable: 0.5377,1.8339, —2.2588, 0.8622, 0.3188.

e When simulating a system, we often need to generate random
variates (e.g., interarrival time, service time) from all kinds of
distributions (e.g., exponential distribution, arbitrary empirical
distribution).

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Introduction

In practice:
e Most simulation softwares have build-in functions to generate
random variates from common distributions.
e Most programming languages have implemented the common
routines of random variate generation in the libraries.

[®)BYsA |

SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Introduction

e In practice:
e Most simulation softwares have build-in functions to generate
random variates from common distributions.
e Most programming languages have implemented the common
routines of random variate generation in the libraries.

e |t is nevertheless worthwhile to understand how random
variate generation occurs.
e In case when build-in functions or libraries are unavailable.
e To better understand the randomness in stochastic simulation.
o Be alert to some inadequate random variate generator.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Introduction

e In practice:
e Most simulation softwares have build-in functions to generate
random variates from common distributions.
e Most programming languages have implemented the common
routines of random variate generation in the libraries.

e |t is nevertheless worthwhile to understand how random
variate generation occurs.
e In case when build-in functions or libraries are unavailable.
e To better understand the randomness in stochastic simulation.
o Be alert to some inadequate random variate generator.

e To produce a sequence of random variates from a given
distribution (of a random variable):
@ Start with random variates from Unif(0, 1) (called random
numbers).
® All random variates with given distribution are “transformed”
from random numbers.

[®)BY-sA | SHEN Haihui MEM6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

® Random Number Generation
» Definition
» Pseudo-Random Numbers
» Linear Congruential Generator
» More Sophisticated RNGs
» Tests for Random Numbers

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4

Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Definition

e Random numbers are a sequence of independent random
observations from uniform distribution on [0, 1].

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Definition

e Random numbers are a sequence of independent random
observations from uniform distribution on [0, 1].

o If U ~ Unif(0,1), then E[U] = %, Var(U) = &5, and its pdf is
1, 0<u<l,
-

0, otherwise.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Definition

e Random numbers are a sequence of independent random
observations from uniform distribution on [0, 1].

o If U ~ Unif(0, 1), then E[U] = 1, Var(U) = &, and its pdf is
1, 0<u<l,
Flu) = {0, otherwise.
e 10 random numbers generated in MATLAB: 0.8147, 0.9058,
0.1270, 0.9134, 0.6324, 0.0975, 0.2785, 0.5469, 0.9575,
0.9649.

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Definition

e Random numbers are a sequence of independent random
observations from uniform distribution on [0, 1].

o If U ~ Unif(0,1), then E[U] = %, Var(U) = &, and its pdf is
1, 0<u<l,
Flu) = {0, otherwise.
e 10 random numbers generated in MATLAB: 0.8147, 0.9058,
0.1270, 0.9134, 0.6324, 0.0975, 0.2785, 0.5469, 0.9575,
0.9649.

e Statistical Properties

e Uniformity: Each value on [0, 1] has equal likelihood.
¢ Independence: Implies no correlation between successive
numbers.

[@)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Definition

e Uniformity
0.4
1.00-
0.39
0.75-
0.24
0.50-
0.25- 014
0.00- 0.0
U U U U T J i i i i i T i i T
0.0 0.2 0.4 0.6 0.8 1.0 -4 -3 -2 -1 0 1 2 3 4

Figure: Empirical pdf (i.e., Scaled Histogram): Uniformity vs
Nonuniformity (from ZHANG Xiaowei)

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://xiaoweiz.github.io
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Definition

e Uniformity
0.4
1.00-
0.39
0.75-
0.24
0.50-
0.25- 014
0.00- 0.0
U U U U T J i i i i i T i i T
0.0 0.2 0.4 0.6 0.8 1.0 -4 -3 -2 -1 0 1 2 3 4

Figure: Empirical pdf (i.e., Scaled Histogram): Uniformity vs
Nonuniformity (from ZHANG Xiaowei)

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://xiaoweiz.github.io
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Definition

e Independence

1.00 4

1.00 1 ®eq

:-Co. .t .. .i.;:-. c:
" * %o ‘emece”
N e, 2°%¢ %84’

0751 *a%_ % Yeadoas. 0.75-
MlaRngl e
_ :o’ . : .':...5-' oo :‘o' _
20504 "% 8 e o 2os¥ *° o 52 0.50

0.25 3 <% 0.25

o o @ 0.00 -

Figure: Scatter Plot: Uncorrelated vs Correlated (from ZHANG Xiaowei)

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://xiaoweiz.github.io
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Definition

e Independence

1.00 1 :.... .t ..:o..‘.;:...: 1.00 4
]

¢ AT
o Pog 08 oV, g0

°
0.75 4 4 LY A 0.75 4
° "{" O.a‘. .:.C.- .'.“. o ®
S , o0 's % &) o Boog
:’C . :.':. %o © oo :‘o'
- 0 %0 o -
050 o oY o o 0.50 -
0.25 0.25
0.00 0.00
1 1 1 1
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Xi X

Figure: Scatter Plot: Uncorrelated vs Correlated (from ZHANG Xiaowei)

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://xiaoweiz.github.io
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Pseudo-Random Numbers

e A computer can NOT generate true randomness! It can only
give us pseudo-random (fHEHL) numbers.

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Pseudo-Random Numbers

e A computer can NOT generate true randomness! It can only
give us pseudo-random (fHEHL) numbers.

e “Pseudo” means false
e Generating random numbers by a known method removes true
randomness.
e The set of pseudo-random numbers can be repeated.

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Pseudo-Random Numbers

e A computer can NOT generate true randomness! It can only
give us pseudo-random (fHEHL) numbers.

e “Pseudo” means false
e Generating random numbers by a known method removes true
randomness.
e The set of pseudo-random numbers can be repeated.

e Goal: To produce a sequence of numbers in [0, 1] that
imitates the ideal properties of random numbers.
o Statistical properties are the most important.
e True randomness is not the first priority.

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Pseudo-Random Numbers

e Properties of a good random number generator (RNG):
@ Pass statistical tests.
@ Solid theoretical support.
© Fast.
O Sufficiently long cycle (period).
© Portable to different computers.
® Replicable.

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Pseudo-Random Numbers

e Properties of a good random number generator (RNG):

@ Pass statistical tests.

@ Solid theoretical support.

© Fast.

©® Sufficiently long cycle (period).
® Portable to different computers.
® Replicable.

e Techniques for RNG:

e Linear Congruential Generator (LCG)
e Combined LCG
e Multiple Recursive Generator (MRG)

[@)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Linear Congruential Generator

e Linear Congruential Generator (LCG, ZM:[F L&A 28) is a
simple and early development of RNG.

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 11 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Linear Congruential Generator

e Linear Congruential Generator (LCG, ZM:[F L&A 28) is a
simple and early development of RNG.

@ Produce a sequence of integers x1, o, . .. between 0 and
m —1 by
ziy1 = (ax; +c¢) modm, i=0,1,2,....

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 11 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Linear Congruential Generator

e Linear Congruential Generator (LCG, ZM:[F L&A 28) is a
simple and early development of RNG.

@ Produce a sequence of integers x1, o, . .. between 0 and
m —1 by
ziy1 = (ax; +c¢) modm, i=0,1,2,....

e The initial value xq is called the seed (f), a is multiplier
(FF), cis increment (1 5&), and m is modulus (1&4Y).

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 11 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Linear Congruential Generator

e Linear Congruential Generator (LCG, ZM:[F L&A 28) is a
simple and early development of RNG.

@ Produce a sequence of integers x1, o, . .. between 0 and
m —1 by
ziy1 = (ax; +c¢) modm, i=0,1,2,....

e The initial value x¢ is called the seed (f), a is multiplier
(FF), cis increment (1 5&), and m is modulus (1&4Y).

® Transform x;'s to values between 0 and 1 by

w="2 =012, ..
m

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Linear Congruential Generator

e Linear Congruential Generator (LCG, ZM:[F L&A 28) is a
simple and early development of RNG.

@ Produce a sequence of integers x1, o, . .. between 0 and
m —1 by
ziy1 = (ax; +c¢) modm, i=0,1,2,....

e The initial value x¢ is called the seed (f), a is multiplier
(FF), cis increment (1 5&), and m is modulus (1&4Y).

® Transform x;'s to values between 0 and 1 by

X .
w=—", i=01,2....
m
e Possible values of u;: {0, 1,..., =1} (May not cover all!)

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 11 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Linear Congruential Generator

e Linear Congruential Generator (LCG, ZM:[F L&A 28) is a
simple and early development of RNG.

@ Produce a sequence of integers x1, o, . .. between 0 and
m —1 by
ziy1 = (ax; +c¢) modm, i=0,1,2,....

e The initial value x¢ is called the seed (f), a is multiplier
(FF), cis increment (1 5&), and m is modulus (1&4Y).

® Transform x;'s to values between 0 and 1 by

T
w=—", i=01,2....
m
e Possible values of u;: {0, 1,..., =1} (May not cover all!)

e The selection of the values for a, ¢, m, and xg drastically
affects the statistical properties and the cycle length.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 11 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Linear Congruential Generator

e Example: Use LCG with zg =27, a = 17, ¢ = 43, and
m = 100.

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://xiaoweiz.shinyapps.io/randNumGen/
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Linear Congruential Generator

e Example: Use LCG with zg =27, a = 17, ¢ = 43, and
m = 100.

xo = 27
x1 = (17 x 27+ 43) mod 100 = 502 mod 100 = 2

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://xiaoweiz.shinyapps.io/randNumGen/
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Linear Congruential Generator

e Example: Use LCG with zg =27, a = 17, ¢ = 43, and
m = 100.
xo = 27
x1 = (17 x 27+ 43) mod 100 = 502 mod 100 = 2
uy; =2/100 = 0.02

EGET MEM6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://xiaoweiz.shinyapps.io/randNumGen/
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Linear Congruential Generator

e Example: Use LCG with x¢g =27, a = 17, ¢ = 43, and
m = 100.
xo = 27
x1 = (17 x 27+ 43) mod 100 = 502 mod 100 = 2
uy; =2/100 = 0.02
x2 = (17 x 24 43) mod 100 = 77 mod 100 = 77
up = 77/100 = 0.77

SEGE MEM6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://xiaoweiz.shinyapps.io/randNumGen/
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Linear Congruential Generator

e Example: Use LCG with zg =27, a = 17, ¢ = 43, and
m = 100.

xo = 27
x1 = (17 x 27+ 43) mod 100 = 502 mod 100 = 2
uy; =2/100 = 0.02
x2 = (17 x 24 43) mod 100 = 77 mod 100 = 77
up = 77/100 = 0.77
xg = (17 x 77+ 43) mod 100 = 1352 mod 100 = 52
uz = 52/100 = 0.52

SEGE MEM6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://xiaoweiz.shinyapps.io/randNumGen/
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Linear Congruential Generator

e Example: Use LCG with x¢g =27, a = 17, ¢ = 43, and
m = 100.

xo = 27
x1 = (17 x 27+ 43) mod 100 = 502 mod 100 = 2
uy; =2/100 = 0.02
x2 = (17 x 24 43) mod 100 = 77 mod 100 = 77
up = 77/100 = 0.77
xg = (17 x 77+ 43) mod 100 = 1352 mod 100 = 52
uz = 52/100 = 0.52
x4 = (17 x 52 4+ 43) mod 100 = 927 mod 100 = 27
wy = 27/100 = 0.27

SHEN Haihui MEM6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://xiaoweiz.shinyapps.io/randNumGen/
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Linear Congruential Generator

e Example: Use LCG with x¢g =27, a = 17, ¢ = 43, and
m = 100.

xo = 27
x1 = (17 x 27+ 43) mod 100 = 502 mod 100 = 2
uy; =2/100 = 0.02
x2 = (17 x 24 43) mod 100 = 77 mod 100 = 77
up = 77/100 = 0.77
xg = (17 x 77+ 43) mod 100 = 1352 mod 100 = 52
uz = 52/100 = 0.52
x4 = (17 x 52 4+ 43) mod 100 = 927 mod 100 = 27
wy = 27/100 = 0.27

The cycle length is only 4!

SEGETT MEM6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://xiaoweiz.shinyapps.io/randNumGen/
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Linear Congruential Generator

e Example: Use LCG with x¢g =27, a = 17, ¢ = 43, and
m = 100.

xo = 27
x1 = (17 x 27+ 43) mod 100 = 502 mod 100 = 2
uy; =2/100 = 0.02
x2 = (17 x 24 43) mod 100 = 77 mod 100 = 77
up = 77/100 = 0.77
xg = (17 x 77+ 43) mod 100 = 1352 mod 100 = 52
uz = 52/100 = 0.52
x4 = (17 x 52 4+ 43) mod 100 = 927 mod 100 = 27
wy = 27/100 = 0.27

The cycle length is only 4!

° Try https://xiaoweiz.shinyapps.io/randNumGen| fOI’ d ifferent para meters.

SEGETT MEM6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://xiaoweiz.shinyapps.io/randNumGen/
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Linear Congruential Generator

e An actual use of LCG ([Lewis et al. 1969)): a = 7°, ¢ = 0,
m =231 — 1 = 2,147,483,647 (a prime number).
e It adopts u; = 7.
e |t passes many of the standard statistical tests.
o Cycle length ~ 231 — 2~ 2 x 10° (well over 2 billion).

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://doi.org/10.1147/sj.82.0136
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Linear Congruential Generator

e An actual use of LCG ([Lewis et al. 1969)): a = 7°, ¢ = 0,
m =231 — 1 = 2,147,483,647 (a prime number).
e It adopts u; = 7.
e |t passes many of the standard statistical tests.

o Cycle length ~ 231 — 2 a2 x 10° (well over 2 billion).

e Note: By letting modulus m be a power of 2 (or close), the
modulo operation can be conducted efficiently, since most
digital computers use a binary representation of numbers.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 13 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://doi.org/10.1147/sj.82.0136
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Linear Congruential Generator

e An actual use of LCG ([Lewis et al. 1969)): a = 7°, ¢ = 0,
m =231 — 1 = 2,147,483,647 (a prime number).

Lq

e It adopts u; = ;5.
e |t passes many of the standard statistical tests.
o Cycle length ~ 231 — 2 a2 x 10° (well over 2 billion).

e Note: By letting modulus m be a power of 2 (or close), the
modulo operation can be conducted efficiently, since most
digital computers use a binary representation of numbers.

e As computing power has increased, LCG is not adequate
nowadays; more sophisticated RNGs are used in practice.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 13 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://doi.org/10.1147/sj.82.0136
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » More Sophisticated RNGs

e Combined LCG: Combine J (> 2) LCG (with ¢ = 0).

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 14 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://doi.org/10.1145/62959.62969
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » More Sophisticated RNGs

e Combined LCG: Combine J (> 2) LCG (with ¢ = 0).

e For 32-bit computers, |L’Ecuyer (1988)| suggests combining
J = 2 generators with a; = 40,014, m; = 2,147,483,563,

as = 40,692, and my = 2,147,483,399.

EGETT MEM6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 14 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://doi.org/10.1145/62959.62969
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » More Sophisticated RNGs

e Combined LCG: Combine J (> 2) LCG (with ¢ = 0).

e For 32-bit computers, |L’Ecuyer (1988)| suggests combining

J = 2 generators with a; = 40,014, m; = 2,147,483,563,
as = 40,692, and me = 2,147,483,399.

@ Select seed Z1,0 in the range [1, m1 — 1] for the first generator, and
seed x2, 0 in the range [1, ma — 1] for the second. Set j = 0.

@ Calculate 21, j41 = a121,; mod my,
T2,j+1 = G2X2, 5 mod ma.

9 Let Tjit+1 = ($1,j+1 — 1’2,j+1) mod (m1 — 1).
(Remark: mod uses floored division, i.e., y mod m =y —m|£].)

O Return
Tjp1 .
u 1{73711, Iij+1>0,
J+1 = mq—1 .
7}11 if Tj+1 = 0.

® Set j =j +1 and go to Step 2.

[@)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 14 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://doi.org/10.1145/62959.62969
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » More Sophisticated RNGs

e Combined LCG: Combine J (> 2) LCG (with ¢ = 0).

e For 32-bit computers, |L’Ecuyer (1988)| suggests combining

J = 2 generators with a; = 40,014, m; = 2,147,483,563,
as = 40,692, and me = 2,147,483,399.

@ Select seed Z1,0 in the range [1, m1 — 1] for the first generator, and
seed x2, 0 in the range [1, ma — 1] for the second. Set j = 0.

@ Calculate 21, j41 = a121,; mod my,
T2,j+1 = G2X2, 5 mod ma.

9 Let Tjit+1 = ($1,j+1 — x2,j+1) mod (m1 — 1).
(Remark: mod uses floored division, i.e., y mod m =y —m|£].)

O Return
Tjp1 .
u 1{73711, Iij+1>0,
J+1 = mq—1 .
7}11 if Tj+1 = 0.

® Set j =j +1 and go to Step 2.
It has cycle length (m; — 1)(mg — 1)/2 ~ 2 x 1018,

[@)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 14 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://doi.org/10.1145/62959.62969
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » More Sophisticated RNGs

e Multiple Recursive Generator (MRG): Extends LCG by using a
higher-order recursion:

x; = (a12i—1 + agwi_2 + - - - + apx;_) mod m.

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 15 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://doi.org/10.1287/opre.47.1.159
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » More Sophisticated RNGs

e Multiple Recursive Generator (MRG): Extends LCG by using a
higher-order recursion:
z; = (a1xi—1 + agxi—2 + - - - + apxi— k) mod m.

e A specific instance that has been widely implemented is

MRG32k3a' ([L'Ecuyer 1999)), which is a combined MRG with

J=2and K = 3.

TM‘RGSQkSa or its adaptation is one of the RNGs used in MATLAB, R, SAS, Arena, etc.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 15 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://doi.org/10.1287/opre.47.1.159
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » More Sophisticated RNGs

e Multiple Recursive Generator (MRG): Extends LCG by using a
higher-order recursion:
z; = (a1xi—1 + agxi—2 + - - - + apxi— k) mod m.

e A specific instance that has been widely implemented is

MRG32k3al (IL'Ecuyer 1999)), which is a combined MRG with
J=2and K =3.

e It has cycle length ~ 3 x 1057, which is enormous.

« If you could generate one billion (10°) pseudo-random
numbers per second, then it would take longer than the age of
the universe to exhaust the period of MRG32k3a!

TM‘RGSQkSa or its adaptation is one of the RNGs used in MATLAB, R, SAS, Arena, etc.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 15 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://doi.org/10.1287/opre.47.1.159
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Tests for Random Numbers

e Tests based on generated sequences of numbers.
e Frequency Test for uniformity (discussed in next lecture)
— Kolmogorov—Smirnov test (i /R B & 1& Fe—H K /R 7% T TE)
— chi-square test (x? test, £ /7HE%)
o Autocorrelation Test for independence.

Spring 2023 (full-time) 16 / 38

MEM®6810 Modeling and Simulation, Lec 4

[®)BY-sA | SHEN Haihui

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://doi.org/10.1109/WSC.2001.977250
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Tests for Random Numbers

e Tests based on generated sequences of numbers.

e Frequency Test for uniformity (discussed in next lecture)
— Kolmogorov—Smirnov test (i /R B & 1& Fe—H K /R 7% T TE)

— chi-square test (x? test, £ /7HE%)
o Autocorrelation Test for independence.

e There are also some theoretical tests without actually
generating any numbers, e.g., spectral test (3&64%).

Spring 2023 (full-time) 16 / 38

MEM®6810 Modeling and Simulation, Lec 4

[®)BY-sA | SHEN Haihui

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://doi.org/10.1109/WSC.2001.977250
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Tests for Random Numbers

e Tests based on generated sequences of numbers.
e Frequency Test for uniformity (discussed in next lecture)
— Kolmogorov—Smirnov test (i /R B & 1& Fe—H K /R 7% T TE)
— chi-square test (x? test, £ /7HE%)
o Autocorrelation Test for independence.

e There are also some theoretical tests without actually
generating any numbers, e.g., spectral test (3&64%).

e Fortunately, the well-known RNGs which are widely used in
simulation softwares and languages have been extensively
tested and validated.

16 / 38

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://doi.org/10.1109/WSC.2001.977250
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Tests for Random Numbers

e Tests based on generated sequences of numbers.
e Frequency Test for uniformity (discussed in next lecture)
— Kolmogorov—Smirnov test (i /R B & 1& Fe—H K /R 7% T TE)
— chi-square test (x? test, £ /7HE%)
o Autocorrelation Test for independence.

e There are also some theoretical tests without actually
generating any numbers, e.g., spectral test (3&64%).

e Fortunately, the well-known RNGs which are widely used in
simulation softwares and languages have been extensively
tested and validated.

e Be careful when the RNG at hand is not explicitly known or
documented!

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 16 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://doi.org/10.1109/WSC.2001.977250
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Tests for Random Numbers

e Tests based on generated sequences of numbers.
e Frequency Test for uniformity (discussed in next lecture)
— Kolmogorov—Smirnov test (i /R B & 1& Fe—H K /R 7% T TE)
— chi-square test (x? test, £ /7HE%)
o Autocorrelation Test for independence.

e There are also some theoretical tests without actually
generating any numbers, e.g., spectral test (3&64%).

e Fortunately, the well-known RNGs which are widely used in
simulation softwares and languages have been extensively
tested and validated.

e Be careful when the RNG at hand is not explicitly known or
documented!
e Even RNGs that have been used for years in popular
commercial softwares (e.g., Excel, Visual Basic), have been

found to be inadequate (L'Ecuyer 2001]).

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 16 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://doi.org/10.1109/WSC.2001.977250
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

©® Random Variate Generation

(cc

» Inverse-Transform Technique

» Acceptance-Rejection Technique
» Other Ad-Hoc Methods

» Generating Poisson Process

SHEN Haihui

MEM®6810 Modeling and Simulation, Lec 4

Spring 2023 (full-time)

17 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation

e Assumption: RNG is available, i.e. we have a sequence of
random numbers (i.e., Unif(0, 1) random variates).

e Goal: Produce random variates from a given probability
distribution (e.g. exponential, Poisson, etc.).

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 18 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation

e Assumption: RNG is available, i.e. we have a sequence of
random numbers (i.e., Unif(0, 1) random variates).

e Goal: Produce random variates from a given probability
distribution (e.g. exponential, Poisson, etc.).

o Widely-used techniques’
e Inverse-transform technique (generic)
 Acceptance-rejection technique (generic)
e Other ad-hoc methods for some specific distributions

TMethods introduced in this lecture are exact; there are also approximation methods such as MCMC.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 18 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Inverse-Transform Technique

e Let F'(x) be the CDF of X, ie., F(z) =P(X < x).

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 19 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Inverse-Transform Technique

e Let F'(x) be the CDF of X, ie., F(z) =P(X < x).

................ ELEG) s e L g
: :
| T T
0 o Q| 22 @3 T4
Figure: Continuous Random Variable Figure: Discrete Random Variable

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 19 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Inverse-Transform Technique

e Let F'(x) be the CDF of X, ie., F(z) =P(X < x).

................ ELEG) s e L g
: :
0 o Q| 22 @3 T4
Figure: Continuous Random Variable Figure: Discrete Random Variable

e Procedures

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 19 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Inverse-Transform Technique

e Let F'(x) be the CDF of X, ie., F(z) =P(X < x).

................ R el B g
: :
0 o Q| 22 @3 T4
Figure: Continuous Random Variable Figure: Discrete Random Variable

e Procedures
@ Generate (as needed) random numbers (on vertical axis).

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 19 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Inverse-Transform Technique

e Let F'(x) be the CDF of X, ie., F(z) =P(X < x).

0 EENES 1

Figure: Continuous Random Variable Figure: Discrete Random Variable

e Procedures
@ Generate (as needed) random numbers (on vertical axis).
® Map inversely to points on horizontal axis, which are the
desired random variates from F'(x).

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 19 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Inverse-Transform Technique

e The formal definition of inverse function is
Fl(y) =min{z: F(z) >y}, 0<y<l.

................ LLEG) s e L g
v
v
— x T
0 X T Q| 22 X T4
Figure: Continuous Random Variable Figure: Discrete Random Variable

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 20 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Inverse-Transform Technique

e The formal definition of inverse function is
Fl(y) =min{z: F(z) >y}, 0<y<l.

e If U ~ Unif(0,1), then F~1(U) has the same distribution as

X, i.e.,
P(F1(U) <z) =P(U < F(x)) = F(2)
................ LLEG) s e L g
F//O X . 5;1 N X T4 :
Figure: Continuous Random Variable Figure: Discrete Random Variable

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 20 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Inverse-Transform Technique

e The inverse-transform technique is useful when the CDF is so
simple that its inverse function can be analytically solved or
easily computed.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 21 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Inverse-Transform Technique

e The inverse-transform technique is useful when the CDF is so
simple that its inverse function can be analytically solved or
easily computed.

e |t can be used to sample from various continuous distributions
e uniform
e exponential
e triangular
e Weibull
e Cauchy
e Pareto

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 21 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Inverse-Transform Technique

e The inverse-transform technique is useful when the CDF is so
simple that its inverse function can be analytically solved or
easily computed.

e |t can be used to sample from various continuous distributions
e uniform
e exponential
e triangular
e Weibull
e Cauchy
e Pareto

e It can be used to sample from all (in principle) discrete
distributions, e.g.,
o discrete uniform
e geometric
e arbitrary empirical distribution

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 21 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Uniform Distribution

e Goal: Generate random variates from X ~ Unif(a, b).

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 22 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Uniform Distribution

e Goal: Generate random variates from X ~ Unif(a, b).

e Intuition: Since X =a+ (b—a)U, we just need to:
@ Generate random number u;;
® Output z; = a + (b — a)u; as the required random variates.

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 22 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Uniform Distribution

e Goal: Generate random variates from X ~ Unif(a, b).

e Intuition: Since X = a + (b — a)U, we just need to:
@ Generate random number u;;
® Output z; = a + (b — a)u; as the required random variates.

e For X ~ Unif(a, b), the pdf and CDF are

! <z<b 0, z<a,

— e OETE0 pgy = { ez <x<b

f) {0, otherwise, () b=’ ASTS0
L, b <.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 22 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Uniform Distribution

e Goal: Generate random variates from X ~ Unif(a, b).

e Intuition: Since X = a + (b — a)U, we just need to:
@ Generate random number u;;
® Output z; = a + (b — a)u; as the required random variates.

e For X ~ Unif(a, b), the pdf and CDF are

e

r < a,

1
= b—a’ a S €T S b, F _ - _ b
f@) {0, otherwise, () , a<x <D,
b <.

8
|
Q

— o~

e Solve the inverse function of F(z),

Flyy=a+(b-a)y, 0<y<l.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

22 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Uniform Distribution

e Goal: Generate random variates from X ~ Unif(a, b).

e Intuition: Since X = a + (b — a)U, we just need to:

@ Generate random number u;;
® Output z; = a + (b — a)u; as the required random variates.

e For X ~ Unif(a, b), the pdf and CDF are

! <z<b 0, z<a,

— e OETE0 pgy = { ez <x<b

f) {0, otherwise, () b=’ ASTS0
L, b <.

e Solve the inverse function of F(z),

Flyy=a+(b-a)y, 0<y<l.

e So, F"Y(U) = a+ (b — a)U has the same distribution as X.

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 22 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Exponential Distribution

e Goal: Generate random variates from X ~ Exp()).

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 23 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Exponential Distribution

e Goal: Generate random variates from X ~ Exp()).

e For X ~ Exp()), the pdf and CDF are
-z
ro= {07 1Y F -

1—e?, >0,
0, x <0,

0, x < 0.

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 23 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Exponential Distribution

e Goal: Generate random variates from X ~ Exp()).

e For X ~ Exp()), the pdf and CDF are
de A% >0, 1—e?, >0,
)= { P - {

0, x <0, 0, x < 0.

e Solve the inverse function of F'(x),

1
Fl(y) = —Xln(l -y), O0<y<l.

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 23 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Exponential Distribution

Goal: Generate random variates from X ~ Exp(\).

For X ~ Exp(\), the pdf and CDF are
de A% >0, 1—e?, >0,
)= F) - {

0, x <0, 0, x < 0.

Solve the inverse function of F(z),

1
Fl(y) = —Xln(l -y), O0<y<l.

So, F~1(U) = —3In(1 — U) has the same distribution as X.

[@)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 23 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Exponential Distribution

e Goal: Generate random variates from X ~ Exp()).

For X ~ Exp(\), the pdf and CDF are
de A% >0, 1—e?, >0,
)= F) - {

0, x <0, 0, x < 0.

Solve the inverse function of F(z),

1
Fl(y) = —Xln(l -y), O0<y<l.

So, F~1(U) = —3In(1 — U) has the same distribution as X.

Remark: 1 — U ~ Unif (0, 1) = —3 In(U) is sufficient.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 23 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Exponential Distribution

e Goal: Generate random variates from X ~ Exp()).

For X ~ Exp(\), the pdf and CDF are
de A% >0, 1—e?, >0,
)= F) - {

0, x <0, 0, x < 0.

Solve the inverse function of F(z),

1
Fl(y) = —Xln(l -y), O0<y<l.

So, F~1(U) = —3In(1 — U) has the same distribution as X.

Remark: 1 — U ~ Unif (0, 1) = —3 In(U) is sufficient.

Numerical test for Exp(1) in Excel.

@ Generate 200 random numbers.
® Obtain 200 random variates via the inverse function.

[@)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 23 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Exponential Distribution

fx)
=
g — — ~m
Sl T o 1]
g (=R 1
T |
E bbb : Figure:
% . | (a) Empirical histogram of 200
~ A A A A | generated uniform random
R A A ! numbers;
0 02 04 06 08 1 x 0 1 x (b) Theoretical density of
@) () Unif (0, 1);

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2 (full-time) 24 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation

» Exponential Distribution

0.1

Relative frequency

0.4

o
15

I
1S}

Relative frequency

0.1

(cc

SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4

f@)
— — ~
— ! —_ [

I T e I Y o B | 1 1
[S R R I R R i
[I R N R A i
[A T I R R | i
[R T I R A | i
L I
[I R R A i
[R T I R A i
[Y I R R R A I
[I I R I R A | i
N S S Y S | L
02 04 06 08 1 X 0 1

(a) fx) (®)
i
i
i
i
|
i
I
!
—
.
I I (d)
.
i i
P
o
=
I
N S N Sy = S
1 2 3 4 5 6
(©

Figure:

(a) Empirical histogram of 200
generated uniform random
numbers;

(b) Theoretical density of
Unif (0, 1);

(c) Empirical histogram of 200
generated variates from Exp(1);
(d) Theoretical density of
Exp(1).

(from |Banks et al. (2010)))

(full-time) 24 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/
https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html

Random Variate Generation » Discrete Distribution

e Consider a discrete random variable X taking values 0, 1, 2
with probability 0.5, 0.3 and 0.2.

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 25 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Discrete Distribution

e Consider a discrete random variable X taking values 0, 1, 2
with probability 0.5, 0.3 and 0.2.

e The pmf and CDF are

0, z <0,
0.5, =0, 05 0<z<l
. xr
= . = F = ' - '
pl@) =403 w=1 F@) =490 1,0
0.2, x==2,

1, 2 <z

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 25 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Discrete Distribution

e Consider a discrete random variable X taking values 0, 1, 2
with probability 0.5, 0.3 and 0.2.

e The pmf and CDF are

0, T <0,
0.5, =0, 05 0<z<l
. xr
= . = F = ! - !
pl@) =403 w=1 F@) =490 1,0
0.2, x==2,

1, 2 <z

e Solve the inverse function. (Recall 7 '(y) == min{z: F'(x) > y}.)

F(x)
1+ —
i
08 —
|
I
|
0.5 $————o
| |
1 2 x

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 25 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation

» Discrete Distribution

e Consider a discrete random variable X taking values 0, 1, 2

with probability 0.5, 0.3 and 0.2.
e The pmf and CDF are

0,
0.5, =0,
0.5,
p(r) =403, z=1 F(z)= 08
0.2, z=2 1. '

z <0,
0<z <1,
1<z <2,
2 <z

e Solve the inverse function. (Recall 7 '(y) == min{z: F'(x) > y}.)

F(x)
1 —
I

0.8 [—— -1

! F(y) =
05—

| |

1 2 *

[®)BYsA |

SHEN Haihui

MEM®6810 Modeling and Simulation, Lec 4

Spring 2023 (full-time)

0<y<0.5
0.5 <y <038,
0.8 <y<1.

25 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation

» Discrete Distribution

e Consider a discrete random variable X taking values 0, 1, 2

with probability 0.5, 0.3 and 0.2.
e The pmf and CDF are

0,
0.5, =0,
0.5,
p(r) =403, z=1 F(z)= 08
0.2, z=2 1. '

z <0,
0<z <1,
1<z <2,
2 <z

e Solve the inverse function. (Recall 7 '(y) == min{z: F'(x) > y}.)

F(x)
T ! 0<y<0.5,
08 — -1
3 F~(y) = 0.5<y <08,
03— 08 <y<l.
l L Try it in Excel.

[®)BYsA |

SHEN Haihui

MEM®6810 Modeling and Simulation, Lec 4

Spring 2023 (full-time)

25 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Acceptance-Rejection Technique

e Why do we need another method when the inverse-transform
technique is already generic?

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 26 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Acceptance-Rejection Technique

e Why do we need another method when the inverse-transform
technique is already generic?

e The CDF of a desired distribution may not have an analytical
form.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 26 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Acceptance-Rejection Technique

e Why do we need another method when the inverse-transform
technique is already generic?
e The CDF of a desired distribution may not have an analytical
form.
e The inverse CDF may not exist in closed form and may be
challenging to evaluate, e.g., beta, gamma, normal, etc.

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 26 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Acceptance-Rejection Technique

e Why do we need another method when the inverse-transform
technique is already generic?

e The CDF of a desired distribution may not have an analytical
form.

e The inverse CDF may not exist in closed form and may be
challenging to evaluate, e.g., beta, gamma, normal, etc.

e Although you can solve the inverse transform via numerical
methods anyway, the efficiency may be low.

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 26 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Acceptance-Rejection Technique

e Why do we need another method when the inverse-transform
technique is already generic?

e The CDF of a desired distribution may not have an analytical
form.

e The inverse CDF may not exist in closed form and may be
challenging to evaluate, e.g., beta, gamma, normal, etc.

e Although you can solve the inverse transform via numerical
methods anyway, the efficiency may be low.

e Acceptance-rejection technique is also useful for generating a
non-stationary Poisson process (more details later).

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 26 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » A Naive Example

e Goal: Generate random variates from X ~ Unif(1/4, 1) using
acceptance-rejection technique.

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 27 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » A Naive Example

e Goal: Generate random variates from X ~ Unif(1/4, 1) using
acceptance-rejection technique.

@ Generate a random number u (from U ~ Unif(0, 1)).

@® If uw > 1/4, accept u, output u as the desired random variate;
if u < 1/4, reject u, and return to Step 1.

© |If another Unif(1/4, 1) random variate is needed, repeat the
procedure from Step 1; stop otherwise.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 27 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » A Naive Example

e Goal: Generate random variates from X ~ Unif(1/4, 1) using
acceptance-rejection technique.

@ Generate a random number u (from U ~ Unif(0, 1)).

@® If uw > 1/4, accept u, output u as the desired random variate;
if u < 1/4, reject u, and return to Step 1.

© |If another Unif(1/4, 1) random variate is needed, repeat the
procedure from Step 1; stop otherwise.

e Important Observation 1: To produce one random variate
using A-R technique, one may need to generate multiple
random numbers.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 27 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » A Naive Example

e Goal: Generate random variates from X ~ Unif(1/4, 1) using
acceptance-rejection technique.

@ Generate a random number u (from U ~ Unif(0, 1)).

@® If uw > 1/4, accept u, output u as the desired random variate;
if u < 1/4, reject u, and return to Step 1.

© |If another Unif(1/4, 1) random variate is needed, repeat the
procedure from Step 1; stop otherwise.

e Important Observation 1: To produce one random variate
using A-R technique, one may need to generate multiple
random numbers.

e Whereas there exists a one-to-one mapping for the
inverse-transform method.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 27 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » A Naive Example

e Important Observation 2: The accepted values of U are
conditioned values.

e [itself does not have the desired distribution.
e U conditioned on the event {U > 1/4} does!

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » A Naive Example

e Important Observation 2: The accepted values of U are
conditioned values.

e U itself does not have the desired distribution.
e U conditioned on the event {U > 1/4} does!

e For1/4 <z <1,

P{U<zandU >1/4} x—-1/4
P{U > 1/4} - 3/4

which is exactly the desired CDF of X ~ Unif(1/4,1).

P{U < z|U > 1/4} =

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 28 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Bounded Support

e Suppose we want to generate random variates from X, whose
density f(x) has support [a, b] and is upper bounded by M.
M

— f(2)
— M

0
a b

Figure: Bounded Support (original image from ZHANG Xiaowei)

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 29 / 38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://xiaoweiz.github.io
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Bounded Support

e Suppose we want to generate random variates from X, whose
density f(x) has support [a, b] and is upper bounded by M.
M

— f(2)
M

0
a b

Figure: Bounded Support (original image from ZHANG Xiaowei)

@ Generate random variate pairs (y1, 21), (y2, 22), ..., from
uniform{(y, z) :a <y <b, 0<z< M}.

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 29 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://xiaoweiz.github.io
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Bounded Support

e Suppose we want to generate random variates from X, whose
density f(x) has support [a, b] and is upper bounded by M.
M

— f(2)
M

0

a b
Figure: Bounded Support (original image from ZHANG Xiaowei)

@ Generate random variate pairs (y1, 21), (y2, 22), ..., from
uniform{(y, z) :a <y <b, 0<z< M}.
e y; from Y ~ Unif(a, b), z; from Z ~ Unif (0, M)

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 29 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://xiaoweiz.github.io
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Bounded Support

e Suppose we want to generate random variates from X, whose
density f(x) has support [a, b] and is upper bounded by M.
M

— f(2)
— M

accept reject

0

a b
Figure: Bounded Support (original image from ZHANG Xiaowei)

@ Generate random variate pairs (y1, 21), (y2, 22), ..., from
uniform{(y, z) :a <y <b, 0<z< M}.
e y; from Y ~ Unif(a, b), z; from Z ~ Unif (0, M)

® Accept the pair if z; < f(y;) and output y; as random variate
from X with density f(z).

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 29 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://xiaoweiz.github.io
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Bounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).

e (Y, Z) ~uniform{(y,2) :a <y <b, 0<z< M}

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Bounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).

e (Y, Z) ~uniform{(y,2) :a <y <b, 0<z< M}

Proof.

P{Y <z|Z < f(Y)}

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Bounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).

e (Y, Z) ~uniform{(y,2) :a <y <b, 0<z< M}

Proof.

P{Y <z|Z < f(Y)} = P{E{SZ;:ZJ;YJ;%Y)}

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Bounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).

e (Y, Z) ~uniform{(y,2) :a <y <b, 0<z< M}

]P’{Y <z Z< f(Y)}
P{zZ < f(Y)}

fz ff(y) fv. z(y, z)dzdy

LI py 2y, 2)dzdy

PY <zlZz < f(Y)} =

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Bounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).

e (Y, Z) ~uniform{(y,2) :a <y <b, 0<z< M}

Proof.
P{Y <z, Z < f(Y)}
]P’{Z<f()}

f(y) ote: fy,z(y, z) = m
fa fo fY,Z(y-Z)dZdy

PY <zlZz < f(Y)} =

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Bounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).

e (Y, Z) ~uniform{(y,2) :a <y <b, 0<z< M}

Proof.
P{Y <z,Z < f(Y)}
P{z <f(YV)}

e JI9 py 2(y, 2)dzdy
- fb fof(y> fy. z(y, z)dzdy
f ff(y) o= a)Mdzdy
f ff(y) = a)MdZdy

P{Y <o|Z < f(Y)} =

I
(b—a)M

Note: fy z(y,z) =

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Bounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).

e (Y, Z) ~uniform{(y,2) :a <y <b, 0<z< M}

Proof.

P{Y <=,Z < f(Y)}
B(Z < f(V)}

— f: f()f<y> fr. z(y, z)dzdy
fb fof(y> fy. z(y, z)dzdy

f x

f 5 @) = a)Mdzdy N ff(y) dzdy
f ff(y) — a)MdZdy f ff(y dzdy

P{Y <o|Z < f(Y)} =

I
(b—a)M

Note: fy z(y,z) =

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Bounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).

e (Y, Z) ~uniform{(y,2) :a <y <b, 0<z< M}

Proof.
Y sz <00} = P{Y];»{Szmézf?y];(}Y)}
_ f: fof<y> fy,z(y, z)dzdy 1

Note: fy z(y,z) =

J2 I v 2y, 2)dzdy b-a)M

f ff(y) (b a)MdZdy fw ff(y) dzdy
f ff(y) (b a)MdZdy f ff(y dzdy
AV
‘*ﬁﬂw@

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Bounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).

e (Y, Z) ~uniform{(y,2) :a <y <b, 0<z< M}

Proof.
Y sz <00} = P{Y];»{Szmézf?y];(}Y)}
_ f: fof<y> fy,z(y, z)dzdy 1

Note: fy z(y,z) =

J2 I v 2y, 2)dzdy b-a)M

f ff(y) (b a)MdZdy fw ff(y) dzdy

f ff(y) — a)MdZdy f ff(y dzdy
_ Jo Ty P{X <a}

Ji F(y)dy 1

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Bounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).

e (Y, Z) ~uniform{(y,2) :a <y <b, 0<z< M}

Proof.
Py <=z Z<f(Y)}
Y <ol <J} = =57 7o)
fz f()f<y> vaZ(y' z)dzdy ‘ 1
— Ja N . Y z2) = 73— 7
fb fof(y> fy,z(y, z)dzdy ote: fr.z(y.2) (b—a)M
f ff(y) (b a)MdZdy fw ff(y) dzdy
f ff(y) = a)MdZdy f ff(y dzdy
Iy PIX <2} oy L

[Py L

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Bounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).

e (Y, Z) ~uniform{(y,2) :a <y <b, 0<z< M}

Proof.
Py <=z Z<f(Y)}
Y <ol <J} = =57 7o)
fz ff(y) fr.z y z)dzdy i 1
Note: Y'2)= 72— ~77
f fof(y> fy. z(y, z)dzdy ote: fr.z(1.7) (b—a)M
f ff(y) (b a)MdZdy fﬂc ff(y) dzdy
f ff(y) = a)MdZdy f ff(y dzdy
Iy PIX <2} oy L

[Py L

e The acceptance rate is P{Z < f(Y)} = m

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Beta from Uniform

e Goal: Generate random variates from Beta(c, 3), where the

density is f(x) = %, x € [0,1].

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 31 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Beta from Uniform

e Goal: Generate random variates from Beta(c, 3), where the
a:o"l(l—x)ﬁ’l

density is f(SC) = W’ S [0,].]
2.5 P
a=58=1—0o
a=1pB=3 —
1l 0=2p8=2 —
0=2p8=5——
15 F
kS]
(=8
1F
0.5
0 H
0 0.2 0.4 0.6 0.8 1

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 31 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Beta from Uniform

e Goal: Generate random variates from Beta(c, 3), where the
a:o"l(l—a:)ﬁ’l

density is f(z) = 55— = €[0,1].
25 w=pm05
a=5pB=1 —
a=1pB=3 —
5L a=2.p=2 —
a=2,B=5 —
15 F
kS]
(=8
1F
0.5
0 ol
0 0.2 0.4 0.6 0.8 1

e If a>1and B >1, then f(z) is maximized at = = —af'f_ng
(afl)a_l(ﬂfl)ﬁ_l

and the maximum is M = (@ t=2)"F 2B(a f)"

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Beta from Uniform

e Goal: Generate random variates from Beta(c, 3), where the
a:o"l(l—a:)ﬁ’l

density is f(z) = 55— = €[0,1].
25 a=p=05 —
a=5p=1—0
a=1pB=3 —
5L a=2p=2 —
a=2,B=5 —
15 F
kS]
(=8
1}
0.5
0 : .
0 0.2 0.4 0.6 0.8 1

e If a>1and B >1, then f(z) is maximized at = = —af'f_ng
(afl)a_l(ﬂfl)ﬁ_l
(atB-2)7772B(a, B)"

e The acceptance rate is (b_i)M = (I—E)M = ﬁ

and the maximum is M =

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Unbounded Support

¢ Generate random variates from X, whose density f(x) is
upper bounded by Mg(x), where g(x) is instrumental density.

— f(2)
— My(z)

Figure: Unbounded Support (original image from [ZHANG Xiaowei)

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://xiaoweiz.github.io
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Unbounded Support

¢ Generate random variates from X, whose density f(x) is
upper bounded by Mg(x), where g(x) is instrumental density.

— f(2)
— My(z)

Figure: Unbounded Support (original image from [ZHANG Xiaowei)

@ Generate random variate pairs (y1, 21), (y2, 22), ..., from
uniform{(y, z) : y € support of g(-), 0 < z < Mg(y)}.

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://xiaoweiz.github.io
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Unbounded Support

¢ Generate random variates from X, whose density f(x) is
upper bounded by Mg(x), where g(x) is instrumental density.

— f(2)
— My(z)

Figure: Unbounded Support (original image from [ZHANG Xiaowei)

@ Generate random variate pairs (y1, 21), (y2, 22), ..., from
uniform{(y, z) : y € support of g(-), 0 < z < Mg(y)}.

o y; fromY ~ g(-), z from Z ~ Unif(0, Mg(y;)) (why?)

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://xiaoweiz.github.io
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Unbounded Support

¢ Generate random variates from X, whose density f(x) is
upper bounded by Mg(x), where g(x) is instrumental density.

— f(2)
— My(z)

reject

accept

Figure: Unbounded Support (original image from [ZHANG Xiaowei)
@ Generate random variate pairs (y1, 21), (y2, 22), ..., from
uniform{(y, z) : y € support of g(-), 0 < z < Mg(y)}.
o y; fromY ~ g(-), z from Z ~ Unif(0, Mg(y;)) (why?)
® Accept the pair if z; < f(y;) and output y; as random variate
from X with density f(z).

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://xiaoweiz.github.io
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Unbounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z)
o Let © denote {(y, 2) : y € support of g(-)

e (Y, Z) ~ uniform ©.

L 0<2< Mg(y)}

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 33 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Unbounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z)
o Let © denote {(y, 2) : y € support of g(-)

e (Y, Z) ~ uniform ©.

L 0<2< Mg(y)}

Proof.

PY <z|Z < f(Y)}

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 33 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Unbounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z)
o Let © denote {(y, 2) : y € support of g(-)
e (Y, Z) ~ uniform ©.

L 0<2< Mg(y)}

Proof.

P{Y <z|Z < f(Y)} = P{EEP{SZZZ;YJ;(}Y)}

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 33 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Unbounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).
e Let © denote {(y, 2) : y € support of g(-), 0 <z < Mg(y)}.
e (Y, Z) ~ uniform ©.

Proof.

P{Y <ol < f(V)} = DY S22 < JV)}

P{Z < [(Y)}
P S By gy, 2)dedy
LY fy 2y, 2)dady

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 33 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Unbounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).
e Let © denote {(y, 2) : y € support of g(-), 0 <z < Mg(y)}.
e (Y, Z) ~ uniform ©.
Proof.
P{Y <z Z < f(Y)}
P{Z < f(Y)}
I JI9 v 2(y,
Y f sy, 2)dzdy

P{Y < 2|Z < f(Y)} =

z)dzd
Jdzdy Note: fy z(y,z) = !

© area

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 33 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Unbounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).
e Let © denote {(y, 2) : y € support of g(-), 0 <z < Mg(y)}.
e (Y, Z) ~ uniform ©.

Proof.
P{Y <z, Z < f(Y)}

P{Y < 2|Z < f(Y)} =

P{Z < f(Y)}
I 1O fy 2(y, z)dzdy 1
7 (y) Note: fv.z(y, 2) = © area
f_ 5 fY z(y, z)dzdy
f— f(y) @ area dZdy

f ff(y) @ area dZdy

[@)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 33 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Unbounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).
9(), 0

o Let © denote {(y, 2) : y € support of g(-), z < Mg(y)}.
e (Y, Z) ~ uniform ©.
Proof.
Py <a,Z<f(Y)}
PIY <212 <TI0} = =57 S hy
I TW) £y 2(y, 2)dzdy 1

Note: fy z(y,z) =

S fY 2(y, 2)dzdy
Y sindzdy [T Y dedy
f ff(y) @ area dZdy fjooo fOf(y) dZdy

© area

[@)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4

Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Unbounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).
e Let © denote {(y, 2) : y € support of g(-), 0 <z < Mg(y)}.
e (Y, Z) ~ uniform ©.

Proof.
CP{Y <a,Z< f(Y)}
P{Y <z|Z < f(Y)} = Pz < T
f 15 IO by 4(y, 2)dzdy 1
Note: Y, z) =
f_ fof(y) fy. z(y, z)dzdy ote: fr,z(y.2) O area
f_ f(y) . areadZdy ffoo fof(y) dZdy
g T sidzdy [[V dady
_ I
B m

[@)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Unbounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).
e Let © denote {(y, 2) : y € support of g(-), 0 <z < Mg(y)}.
e (Y, Z) ~ uniform ©.

Proof.
CP{Y <a,Z< f(Y)}
P{Y <z|Z < f(Y)} = Pz < T
f 15 IO by 4(y, 2)dzdy 1
Note: Y, z) =
f_ fof(y) fy. z(y, z)dzdy ote: fr,z(y.2) O area
f_ f(y) . areadZdy ffoo fof(y) dZdy

f ff(y) @ area dZdy fjooo fOf(y) dZdy
ST fWdy PX < a2}
7 Fly)dy 1

[@)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Unbounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).
e Let © denote {(y, 2) : y € support of g(-), 0 <z < Mg(y)}.
e (Y, Z) ~ uniform ©.

Proof.

PlY <z, Z < f(Y

z fy)

dzd

e fof()fy A, 2 Note: fy z(y,2z) = !
f_ I3 fv,z(y, z)dzdy O area
f_ f(y) @areadZdy f ff(y) dZdy
f ff(y) e s dedy f f F®) dzdy

T f(y)d
I | y_P{ng}:P{ng}_ .

T fydy 1

[@)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation

» Unbounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same

distribution as X, i.e., having density f(z
e Let © denote {(y, 2) : y € support of

e (Y, Z) ~ uniform ©.
Proof.
PY < .2 < f(V))
P{Z < f(Y)}
Y By 2(y, 2)dady

P{Y < 2|Z < f(Y)} =

(
9

h
)-
(1), 0<2< Mg(y)}.

T sy) G
I f(y) siodedy [7 ff(y) dzdy
e 2 shadady [, [dady
_ LS D _PX <) pey oy m
JZo fy)dy 1
e The acceptance rate is
P{Z < fV)} = oo = I Mlg(y)dy M 7, 1 wdy — -

[@)BY-sA | SHEN Haihui

MEM®6810 Modeling and Simulation, Lec 4

Spring 2023 (full-time) 33 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Normal from Cauchy

e Goal: Generate random variates from N (0, 1), where the

22
density is f(x) = \/%677, x € (—00,00).

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 34 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Normal from Cauchy

e Goal: Generate random variates from N (0, 1), where the

22
density is f(x) = \/%677, x € (—00,00).

e Use Cauchy(0, 1) density as instrumental density, which is
g(x) = 7r(1-1m 7T E (—00,).

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 34 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Normal from Cauchy

e Goal: Generate random variates from N (0, 1), where the
x2
density is f(x) = \/%677, x € (—00,00).
e Use Cauchy(0, 1) density as instrumental density, which is
g(x) = W(liz 7T E (—o00, 00).

0.5 T T
— Normal

0.4r -- Cauchy

0.3

o

o
0.2}

0.1}

0.0k===

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 34 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Normal from Cauchy

e Goal: Generate random variates from N (0, 1), where the
22
density is f(x) = \/%677, x € (—00,00).
e Use Cauchy(0, 1) density as instrumental density, which is
g(x) = m x € (—00,00).

0.5 T T
— Normal

4+
0 -~ Cauchy
. 0.3F
©
o
0.2F

0.1}

0.0k===

e It is easy to see that % = /51 +2a?)e” 7 is maximized at

x = +1 and the maximum is ,/27“, which is the required M.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 34 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Normal from Cauchy

e Goal: Generate random variates from N (0, 1), where the
22
density is f(x) = \/%677, x € (—00,00).
e Use Cauchy(0, 1) density as instrumental density, which is
g(x) = m x € (—00,00).

0.5 T T
— Normal

4+
0 -~ Cauchy
. 0.3F
©
o
0.2F

0.1r

0.0k===

e It is easy to see that % = /51 +2a?)e” 7 is maximized at

x = +1 and the maximum is ,/2{, which is the required M.

e The acceptance rate is ﬁ = /3. ~ 0.6577.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 34 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Other Ad-Hoc Methods

o Box-Muller method for (0, 1) random variates:
@ Generate u; and us independently from Unif(0, 1).

@ Let 2y = V/—2Inwu cos(2mus) and 2o = /—2Inug sin(2muy).

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 35 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://en.wikipedia.org/wiki/File:Box-Muller_transform_visualisation.svg
https://commons.wikimedia.org/wiki/User:Cmglee
https://creativecommons.org/licenses/by/3.0/deed.en
https://shenhaihui.github.io/static/Box-Muller.svg
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Other Ad-Hoc Methods

o Box-Muller method for (0, 1) random variates:
@ Generate u; and us independently from Unif(0, 1).

@ Let 2y = V/—2Inwu cos(2mus) and 2o = /—2Inug sin(2muy).

e 21 and 2, are random variates from A/(0, 1) (independent).

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 35 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://en.wikipedia.org/wiki/File:Box-Muller_transform_visualisation.svg
https://commons.wikimedia.org/wiki/User:Cmglee
https://creativecommons.org/licenses/by/3.0/deed.en
https://shenhaihui.github.io/static/Box-Muller.svg
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Other Ad-Hoc Methods

o Box-Muller method for (0, 1) random variates:
@ Generate u; and us independently from Unif(0, 1).

@ Let 2y = V/—2Inwu cos(2mus) and 2o = /—2Inug sin(2muy).

e 21 and 2, are random variates from A/(0, 1) (independent).

e Intuition:
« For two independent N(0,1) RVs
Z1 and Z2,
Z3,7Z3 ~ X1, 23 + Z3 ~ X3.

o X ~Exp(1/2) <= X ~x3.

e —2Inwu, is a random variate from
Exp(1/2) (and thus x3).

e The angle is distributed uniformly
around the circle.

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://en.wikipedia.org/wiki/File:Box-Muller_transform_visualisation.svg
https://commons.wikimedia.org/wiki/User:Cmglee
https://creativecommons.org/licenses/by/3.0/deed.en
https://shenhaihui.github.io/static/Box-Muller.svg
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Other Ad-Hoc Methods

o Box-Muller method for (0, 1) random variates:
@ Generate u; and us independently from Unif(0, 1).

@ Let 2y = V/—2Inwu cos(2mus) and 2o = /—2Inug sin(2muy).

e 21 and 2, are random variates from A/(0, 1) (independent).

e Intuition:
« For two independent N(0,1) RVs
Z1 and Z2,
Z3,7Z3 ~ X1, 23 + Z3 ~ X3.

o X ~Exp(1/2) <= X ~x3.

e —2Inwuq is a random variate from
Exp(1/2) (and thus x3).

e The angle is distributed uniformly
around the circle.

e Rigorous proof.

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://en.wikipedia.org/wiki/File:Box-Muller_transform_visualisation.svg
https://commons.wikimedia.org/wiki/User:Cmglee
https://creativecommons.org/licenses/by/3.0/deed.en
https://shenhaihui.github.io/static/Box-Muller.svg
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Other Ad-Hoc Methods

o Box-Muller method for (0, 1) random variates:
@ Generate u; and us independently from Unif(0, 1).

@ Let 2y = V/—2Inwu cos(2mus) and 2o = /—2Inug sin(2muy).

e 21 and 2, are random variates from A/(0, 1) (independent).

e Intuition:

* For two independent N'(0,1) RVs 2
Z1 and Z2,

23,25 ~ XY, ZY 4 25~ X5

asrme '%.

Joapentl e .y,

02 (0),2:(+)

o X ~Exp(1/2) <= X ~x3.

e —2Inw, is a random variate from maEmRIEEaE: ,.
Exp(1/2) (and thus x3). R RSk aRi

e The angle is distributed uniformly 2 V :
around the circle.

40 1 2
w1 (0), z1 (+)

Figure: Box—Muller Method Visualisation
. ((image] by [Cmalee| / [CC BY 3.0)
* Rigorous proof.

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 35 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://en.wikipedia.org/wiki/File:Box-Muller_transform_visualisation.svg
https://commons.wikimedia.org/wiki/User:Cmglee
https://creativecommons.org/licenses/by/3.0/deed.en
https://shenhaihui.github.io/static/Box-Muller.svg
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate I » Other Ad-Hoc M

Figure: Relationships Among 35 Figure: Relationships Among 76 Distributions
Distributions (from [Song (2005)) (from |Leemis & McQueston (2005))

SHEN Haihui MEM6810 Modeling and Simulation, Lec 4 Spring (full-time) 36 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://doi.org/10.1080/07408170590948512
https://doi.org/10.1198/000313008X270448
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Generating Poisson Process

¢ Poisson process with rate \: Interarrival time distribution is
exponential with rate A (or mean 1/)), and

N(t+ h) — N(t) ~ Poisson(Ah). (same as N(h))

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 37 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Generating Poisson Process

e Poisson process with rate A: Interarrival time distribution is
exponential with rate A (or mean 1/)), and

N(t+ h) — N(t) ~ Poisson(Ah). (same as N(h))

e To generate Poisson process with rate A, one only need to
generate iid Exp(A) random variates.

e s;, the arrival time of the ith arrival, satisfies
S; = Si—1 — (1//\) ln(ui), 1= 1, 2,....

[@)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 37 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Generating Poisson Process

e Poisson process with rate A: Interarrival time distribution is
exponential with rate A (or mean 1/)), and

N(t+ h) — N(t) ~ Poisson(Ah). (same as N(h))

e To generate Poisson process with rate A, one only need to
generate iid Exp(A) random variates.

e s;, the arrival time of the ith arrival, satisfies
s$i=8i—1— (/M) In(w;), i=1,2,....
¢ Nonhomogeneous Poisson process with rate (intensity)
function A(t):
N(t+ h) — N(t) ~ Poisson(m(t + h) — m(t)),
where m(t) = [J A(s)ds.

[@)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 37 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Generating Poisson Process

e To generate nonhomogeneous Poisson process with rate
function A(t), one can use the acceptance-rejection method
(which is also called thinning in this context).

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 38 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Generating Poisson Process

e To generate nonhomogeneous Poisson process with rate
function A(t), one can use the acceptance-rejection method
(which is also called thinning in this context).

e |dea behind thinning:
o Generate a stationary Poisson arrival process at the fastest rate
A" = max; A\(t).
e But “accept” only a portion of arrivals, thinning out just
enough to get the desired time-varying rate.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 38 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Generating Poisson Process

e To generate nonhomogeneous Poisson process with rate
function A(t), one can use the acceptance-rejection method
(which is also called thinning in this context).

e |dea behind thinning:

o Generate a stationary Poisson arrival process at the fastest rate
A" = max; A\(t).

e But “accept” only a portion of arrivals, thinning out just
enough to get the desired time-varying rate.

e Algorithm:

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 38 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Generating Poisson Process

e To generate nonhomogeneous Poisson process with rate
function A(t), one can use the acceptance-rejection method
(which is also called thinning in this context).

e |dea behind thinning:

o Generate a stationary Poisson arrival process at the fastest rate
A" = max; A\(t).

e But “accept” only a portion of arrivals, thinning out just
enough to get the desired time-varying rate.

e Algorithm:
@ Sett=0andi=1.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 38 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Generating Poisson Process

e To generate nonhomogeneous Poisson process with rate
function A(t), one can use the acceptance-rejection method
(which is also called thinning in this context).

e |dea behind thinning:

o Generate a stationary Poisson arrival process at the fastest rate
A" = max; A\(t).

e But “accept” only a portion of arrivals, thinning out just
enough to get the desired time-varying rate.

e Algorithm:
@ Sett=0andi=1.

® Generate = from Exp(*), and let ¢ + ¢ + x (this is the arrival
time of the stationary Poisson process with rate *).

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 38 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Generating Poisson Process

e To generate nonhomogeneous Poisson process with rate
function A(t), one can use the acceptance-rejection method
(which is also called thinning in this context).

e |dea behind thinning:
o Generate a stationary Poisson arrival process at the fastest rate
A" = max; A\(t).
e But “accept” only a portion of arrivals, thinning out just
enough to get the desired time-varying rate.

e Algorithm:
@ Sett=0andi=1.
® Generate = from Exp(*), and let ¢ + ¢ + x (this is the arrival
time of the stationary Poisson process with rate *).
© Generate random number u (from Unif(0, 1)).
If w < A(t)/A*, then s; =t and i < i + 1.

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 38 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Generating Poisson Process

e To generate nonhomogeneous Poisson process with rate
function A(t), one can use the acceptance-rejection method
(which is also called thinning in this context).

e |dea behind thinning:
o Generate a stationary Poisson arrival process at the fastest rate
A" = max; A\(t).
e But “accept” only a portion of arrivals, thinning out just
enough to get the desired time-varying rate.

e Algorithm:
@ Sett=0andi=1.
® Generate = from Exp(*), and let ¢ + ¢ + x (this is the arrival
time of the stationary Poisson process with rate *).
© Generate random number u (from Unif(0, 1)).
If w < A(t)/A*, then s; =t and i < i + 1.
O Go to Step 2.

[@)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 38 /38

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

	Cover
	Contents
	Introduction
	Random Number Generation
	Definition
	Pseudo-Random Numbers
	Linear Congruential Generator
	More Sophisticated RNGs
	Tests for Random Numbers

	Random Variate Generation
	Inverse-Transform Technique
	Acceptance-Rejection Technique
	Other Ad-Hoc Methods
	Generating Poisson Process

