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Introduction

e Random variable is a variable whose values are random and
depend on a probability distribution.

e E.g., normal, exponential, Poisson, etc.
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Introduction

e Random variable is a variable whose values are random and
depend on a probability distribution.
e E.g., normal, exponential, Poisson, etc.

e Random variate is a particular outcome (i.e. observed
sample, realization) of a random variable.
e E.g., 5 random variates (outcomes) from a N'(0, 1) random
variable: 0.5377,1.8339, —2.2588, 0.8622, 0.3188.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)


https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Introduction

e Random variable is a variable whose values are random and
depend on a probability distribution.

e E.g., normal, exponential, Poisson, etc.

e Random variate is a particular outcome (i.e. observed
sample, realization) of a random variable.

e E.g., 5 random variates (outcomes) from a N'(0, 1) random
variable: 0.5377,1.8339, —2.2588, 0.8622, 0.3188.

e When simulating a system, we often need to generate random
variates (e.g., interarrival time, service time) from all kinds of
distributions (e.g., exponential distribution, arbitrary empirical
distribution).
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Introduction

In practice:
e Most simulation softwares have build-in functions to generate
random variates from common distributions.
e Most programming languages have implemented the common
routines of random variate generation in the libraries.
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Introduction

e In practice:
e Most simulation softwares have build-in functions to generate
random variates from common distributions.
e Most programming languages have implemented the common
routines of random variate generation in the libraries.

e |t is nevertheless worthwhile to understand how random
variate generation occurs.
e In case when build-in functions or libraries are unavailable.
e To better understand the randomness in stochastic simulation.
o Be alert to some inadequate random variate generator.

[®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)


https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Introduction

e In practice:
e Most simulation softwares have build-in functions to generate
random variates from common distributions.
e Most programming languages have implemented the common
routines of random variate generation in the libraries.

e |t is nevertheless worthwhile to understand how random
variate generation occurs.
e In case when build-in functions or libraries are unavailable.
e To better understand the randomness in stochastic simulation.
o Be alert to some inadequate random variate generator.

e To produce a sequence of random variates from a given
distribution (of a random variable):
@ Start with random variates from Unif(0, 1) (called random
numbers).
® All random variates with given distribution are “transformed”
from random numbers.
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® Random Number Generation
» Definition
» Pseudo-Random Numbers
» Linear Congruential Generator
» More Sophisticated RNGs
» Tests for Random Numbers
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Random Number Generation » Definition

e Random numbers are a sequence of independent random
observations from uniform distribution on [0, 1].
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Random Number Generation » Definition

e Random numbers are a sequence of independent random
observations from uniform distribution on [0, 1].

o If U ~ Unif(0,1), then E[U] = %, Var(U) = &5, and its pdf is
1, 0<u<l,
-

0, otherwise.
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Random Number Generation » Definition

e Random numbers are a sequence of independent random
observations from uniform distribution on [0, 1].

o If U ~ Unif(0, 1), then E[U] = 1, Var(U) = &, and its pdf is
1, 0<u<l,
Flu) = {0, otherwise.
e 10 random numbers generated in MATLAB: 0.8147, 0.9058,
0.1270, 0.9134, 0.6324, 0.0975, 0.2785, 0.5469, 0.9575,
0.9649.
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Random Number Generation » Definition

e Random numbers are a sequence of independent random
observations from uniform distribution on [0, 1].

o If U ~ Unif(0,1), then E[U] = %, Var(U) = &, and its pdf is
1, 0<u<l,
Flu) = {0, otherwise.
e 10 random numbers generated in MATLAB: 0.8147, 0.9058,
0.1270, 0.9134, 0.6324, 0.0975, 0.2785, 0.5469, 0.9575,
0.9649.

e Statistical Properties

e Uniformity: Each value on [0, 1] has equal likelihood.
¢ Independence: Implies no correlation between successive
numbers.
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Random Number Generation » Definition

e Uniformity
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Figure: Empirical pdf (i.e., Scaled Histogram): Uniformity vs
Nonuniformity (from ZHANG Xiaowei)
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Random Number Generation » Definition

e Uniformity
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Figure: Empirical pdf (i.e., Scaled Histogram): Uniformity vs
Nonuniformity (from ZHANG Xiaowei)
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Random Number Generation » Definition

e Independence
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Figure: Scatter Plot: Uncorrelated vs Correlated (from ZHANG Xiaowei)

[@)BY-saA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)


https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://xiaoweiz.github.io
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Number Generation » Definition

e Independence

1.00 1 :.... .t ..:o..‘.;:...: 1.00 4
]

¢ AT
o Pog 08 oV, g0

°
0.75 4 4 LY A 0.75 4
° "{" O.a‘. .:.C.- .'.“. o ®
S , o0 's % & ) o Boog
:’C . :.':. %o © oo :‘o'
- 0 %0 o -
050 o oY o o 0.50 -
0.25 0.25
0.00 0.00
1 1 1 1
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Xi X

Figure: Scatter Plot: Uncorrelated vs Correlated (from ZHANG Xiaowei)
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Random Number Generation » Pseudo-Random Numbers

e A computer can NOT generate true randomness! It can only
give us pseudo-random (fHEHL) numbers.
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Random Number Generation » Pseudo-Random Numbers

e A computer can NOT generate true randomness! It can only
give us pseudo-random (fHEHL) numbers.

e “Pseudo” means false
e Generating random numbers by a known method removes true
randomness.
e The set of pseudo-random numbers can be repeated.
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Random Number Generation » Pseudo-Random Numbers

e A computer can NOT generate true randomness! It can only
give us pseudo-random (fHEHL) numbers.

e “Pseudo” means false
e Generating random numbers by a known method removes true
randomness.
e The set of pseudo-random numbers can be repeated.

e Goal: To produce a sequence of numbers in [0, 1] that
imitates the ideal properties of random numbers.
o Statistical properties are the most important.
e True randomness is not the first priority.
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Random Number Generation » Pseudo-Random Numbers

e Properties of a good random number generator (RNG):
@ Pass statistical tests.
@ Solid theoretical support.
© Fast.
O Sufficiently long cycle (period).
© Portable to different computers.
® Replicable.
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Random Number Generation » Pseudo-Random Numbers

e Properties of a good random number generator (RNG):

@ Pass statistical tests.

@ Solid theoretical support.

© Fast.

©® Sufficiently long cycle (period).
® Portable to different computers.
® Replicable.

e Techniques for RNG:

e Linear Congruential Generator (LCG)
e Combined LCG
e Multiple Recursive Generator (MRG)
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Random Number Generation » Linear Congruential Generator

e Linear Congruential Generator (LCG, ZM:[F L&A 28) is a
simple and early development of RNG.
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Random Number Generation » Linear Congruential Generator

e Linear Congruential Generator (LCG, ZM:[F L&A 28) is a
simple and early development of RNG.

@ Produce a sequence of integers x1, o, . .. between 0 and
m —1 by
ziy1 = (ax; +c¢) modm, i=0,1,2,....
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Random Number Generation » Linear Congruential Generator

e Linear Congruential Generator (LCG, ZM:[F L&A 28) is a
simple and early development of RNG.

@ Produce a sequence of integers x1, o, . .. between 0 and
m —1 by
ziy1 = (ax; +c¢) modm, i=0,1,2,....

e The initial value xq is called the seed (f), a is multiplier
(FF), cis increment (1 5&), and m is modulus (1&4Y).
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Random Number Generation » Linear Congruential Generator

e Linear Congruential Generator (LCG, ZM:[F L&A 28) is a
simple and early development of RNG.

@ Produce a sequence of integers x1, o, . .. between 0 and
m —1 by
ziy1 = (ax; +c¢) modm, i=0,1,2,....

e The initial value x¢ is called the seed (f), a is multiplier
(FF), cis increment (1 5&), and m is modulus (1&4Y).

® Transform x;'s to values between 0 and 1 by

w="2 =012, ..
m
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Random Number Generation » Linear Congruential Generator

e Linear Congruential Generator (LCG, ZM:[F L&A 28) is a
simple and early development of RNG.

@ Produce a sequence of integers x1, o, . .. between 0 and
m —1 by
ziy1 = (ax; +c¢) modm, i=0,1,2,....

e The initial value x¢ is called the seed (f), a is multiplier
(FF), cis increment (1 5&), and m is modulus (1&4Y).

® Transform x;'s to values between 0 and 1 by

X .
w=—", i=01,2....
m
e Possible values of u;: {0, 1,..., =1} (May not cover all!)
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Random Number Generation » Linear Congruential Generator

e Linear Congruential Generator (LCG, ZM:[F L&A 28) is a
simple and early development of RNG.

@ Produce a sequence of integers x1, o, . .. between 0 and
m —1 by
ziy1 = (ax; +c¢) modm, i=0,1,2,....

e The initial value x¢ is called the seed (f), a is multiplier
(FF), cis increment (1 5&), and m is modulus (1&4Y).

® Transform x;'s to values between 0 and 1 by

T
w=—", i=01,2....
m
e Possible values of u;: {0, 1,..., =1} (May not cover all!)

e The selection of the values for a, ¢, m, and xg drastically
affects the statistical properties and the cycle length.
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Random Number Generation » Linear Congruential Generator

e Example: Use LCG with zg =27, a = 17, ¢ = 43, and
m = 100.
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Random Number Generation » Linear Congruential Generator

e Example: Use LCG with zg =27, a = 17, ¢ = 43, and
m = 100.

xo = 27
x1 = (17 x 27+ 43) mod 100 = 502 mod 100 = 2
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Random Number Generation » Linear Congruential Generator

e Example: Use LCG with zg =27, a = 17, ¢ = 43, and
m = 100.
xo = 27
x1 = (17 x 27+ 43) mod 100 = 502 mod 100 = 2
uy; =2/100 = 0.02
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Random Number Generation » Linear Congruential Generator

e Example: Use LCG with x¢g =27, a = 17, ¢ = 43, and
m = 100.
xo = 27
x1 = (17 x 27+ 43) mod 100 = 502 mod 100 = 2
uy; =2/100 = 0.02
x2 = (17 x 24 43) mod 100 = 77 mod 100 = 77
up = 77/100 = 0.77
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Random Number Generation » Linear Congruential Generator

e Example: Use LCG with zg =27, a = 17, ¢ = 43, and
m = 100.

xo = 27
x1 = (17 x 27+ 43) mod 100 = 502 mod 100 = 2
uy; =2/100 = 0.02
x2 = (17 x 24 43) mod 100 = 77 mod 100 = 77
up = 77/100 = 0.77
xg = (17 x 77+ 43) mod 100 = 1352 mod 100 = 52
uz = 52/100 = 0.52
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Random Number Generation » Linear Congruential Generator

e Example: Use LCG with x¢g =27, a = 17, ¢ = 43, and
m = 100.

xo = 27
x1 = (17 x 27+ 43) mod 100 = 502 mod 100 = 2
uy; =2/100 = 0.02
x2 = (17 x 24 43) mod 100 = 77 mod 100 = 77
up = 77/100 = 0.77
xg = (17 x 77+ 43) mod 100 = 1352 mod 100 = 52
uz = 52/100 = 0.52
x4 = (17 x 52 4+ 43) mod 100 = 927 mod 100 = 27
wy = 27/100 = 0.27
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Random Number Generation » Linear Congruential Generator

e Example: Use LCG with x¢g =27, a = 17, ¢ = 43, and
m = 100.

xo = 27
x1 = (17 x 27+ 43) mod 100 = 502 mod 100 = 2
uy; =2/100 = 0.02
x2 = (17 x 24 43) mod 100 = 77 mod 100 = 77
up = 77/100 = 0.77
xg = (17 x 77+ 43) mod 100 = 1352 mod 100 = 52
uz = 52/100 = 0.52
x4 = (17 x 52 4+ 43) mod 100 = 927 mod 100 = 27
wy = 27/100 = 0.27

The cycle length is only 4!
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Random Number Generation » Linear Congruential Generator

e Example: Use LCG with x¢g =27, a = 17, ¢ = 43, and
m = 100.

xo = 27
x1 = (17 x 27+ 43) mod 100 = 502 mod 100 = 2
uy; =2/100 = 0.02
x2 = (17 x 24 43) mod 100 = 77 mod 100 = 77
up = 77/100 = 0.77
xg = (17 x 77+ 43) mod 100 = 1352 mod 100 = 52
uz = 52/100 = 0.52
x4 = (17 x 52 4+ 43) mod 100 = 927 mod 100 = 27
wy = 27/100 = 0.27

The cycle length is only 4!

° Try https://xiaoweiz.shinyapps.io/randNumGen| fOI’ d ifferent para meters.
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Random Number Generation » Linear Congruential Generator

e An actual use of LCG ([Lewis et al. 1969)): a = 7°, ¢ = 0,
m =231 — 1 = 2,147,483,647 (a prime number).
e It adopts u; = 7.
e |t passes many of the standard statistical tests.
o Cycle length ~ 231 — 2~ 2 x 10° (well over 2 billion).
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Random Number Generation » Linear Congruential Generator

e An actual use of LCG ([Lewis et al. 1969)): a = 7°, ¢ = 0,
m =231 — 1 = 2,147,483,647 (a prime number).
e It adopts u; = 7.
e |t passes many of the standard statistical tests.

o Cycle length ~ 231 — 2 a2 x 10° (well over 2 billion).

e Note: By letting modulus m be a power of 2 (or close), the
modulo operation can be conducted efficiently, since most
digital computers use a binary representation of numbers.
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Random Number Generation » Linear Congruential Generator

e An actual use of LCG ([Lewis et al. 1969)): a = 7°, ¢ = 0,
m =231 — 1 = 2,147,483,647 (a prime number).

Lq

e It adopts u; = ;5.
e |t passes many of the standard statistical tests.
o Cycle length ~ 231 — 2 a2 x 10° (well over 2 billion).

e Note: By letting modulus m be a power of 2 (or close), the
modulo operation can be conducted efficiently, since most
digital computers use a binary representation of numbers.

e As computing power has increased, LCG is not adequate
nowadays; more sophisticated RNGs are used in practice.
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Random Number Generation » More Sophisticated RNGs

e Combined LCG: Combine J (> 2) LCG (with ¢ = 0).
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Random Number Generation » More Sophisticated RNGs

e Combined LCG: Combine J (> 2) LCG (with ¢ = 0).

e For 32-bit computers, |L’Ecuyer (1988)| suggests combining
J = 2 generators with a; = 40,014, m; = 2,147,483,563,

as = 40,692, and my = 2,147,483,399.
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Random Number Generation » More Sophisticated RNGs

e Combined LCG: Combine J (> 2) LCG (with ¢ = 0).

e For 32-bit computers, |L’Ecuyer (1988)| suggests combining

J = 2 generators with a; = 40,014, m; = 2,147,483,563,
as = 40,692, and me = 2,147,483,399.

@ Select seed Z1,0 in the range [1, m1 — 1] for the first generator, and
seed x2, 0 in the range [1, ma — 1] for the second. Set j = 0.

@ Calculate 21, j41 = a121,; mod my,
T2,j+1 = G2X2, 5 mod ma.

9 Let Tjit+1 = ($1,j+1 — 1’2,j+1) mod (m1 — 1).
(Remark: mod uses floored division, i.e., y mod m =y —m|£].)

O Return
Tjp1 .
u 1{73711, Iij+1>0,
J+1 = mq—1 .
7}11 if Tj+1 = 0.

® Set j =j +1 and go to Step 2.
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Random Number Generation » More Sophisticated RNGs

e Combined LCG: Combine J (> 2) LCG (with ¢ = 0).

e For 32-bit computers, |L’Ecuyer (1988)| suggests combining

J = 2 generators with a; = 40,014, m; = 2,147,483,563,
as = 40,692, and me = 2,147,483,399.

@ Select seed Z1,0 in the range [1, m1 — 1] for the first generator, and
seed x2, 0 in the range [1, ma — 1] for the second. Set j = 0.

@ Calculate 21, j41 = a121,; mod my,
T2,j+1 = G2X2, 5 mod ma.

9 Let Tjit+1 = ($1,j+1 — x2,j+1) mod (m1 — 1).
(Remark: mod uses floored division, i.e., y mod m =y —m|£].)

O Return
Tjp1 .
u 1{73711, Iij+1>0,
J+1 = mq—1 .
7}11 if Tj+1 = 0.

® Set j =j +1 and go to Step 2.
It has cycle length (m; — 1)(mg — 1)/2 ~ 2 x 1018,
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Random Number Generation » More Sophisticated RNGs

e Multiple Recursive Generator (MRG): Extends LCG by using a
higher-order recursion:

x; = (a12i—1 + agwi_2 + - - - + apx;_ ) mod m.
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Random Number Generation » More Sophisticated RNGs

e Multiple Recursive Generator (MRG): Extends LCG by using a
higher-order recursion:
z; = (a1xi—1 + agxi—2 + - - - + apxi— k) mod m.

e A specific instance that has been widely implemented is

MRG32k3a' ([L'Ecuyer 1999)), which is a combined MRG with

J=2and K = 3.

TM‘RGSQkSa or its adaptation is one of the RNGs used in MATLAB, R, SAS, Arena, etc.
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Random Number Generation » More Sophisticated RNGs

e Multiple Recursive Generator (MRG): Extends LCG by using a
higher-order recursion:
z; = (a1xi—1 + agxi—2 + - - - + apxi— k) mod m.

e A specific instance that has been widely implemented is

MRG32k3al (IL'Ecuyer 1999)), which is a combined MRG with
J=2and K =3.

e It has cycle length ~ 3 x 1057, which is enormous.

« If you could generate one billion (10°) pseudo-random
numbers per second, then it would take longer than the age of
the universe to exhaust the period of MRG32k3a!

TM‘RGSQkSa or its adaptation is one of the RNGs used in MATLAB, R, SAS, Arena, etc.
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Random Number Generation » Tests for Random Numbers

e Tests based on generated sequences of numbers.
e Frequency Test for uniformity (discussed in next lecture)
— Kolmogorov—Smirnov test (i /R B & 1& Fe—H K /R 7% T TE)
— chi-square test (x? test, £ /7HE%)
o Autocorrelation Test for independence.
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Random Number Generation » Tests for Random Numbers

e Tests based on generated sequences of numbers.

e Frequency Test for uniformity (discussed in next lecture)
— Kolmogorov—Smirnov test (i /R B & 1& Fe—H K /R 7% T TE)

— chi-square test (x? test, £ /7HE%)
o Autocorrelation Test for independence.

e There are also some theoretical tests without actually
generating any numbers, e.g., spectral test (3&64%).
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Random Number Generation » Tests for Random Numbers

e Tests based on generated sequences of numbers.
e Frequency Test for uniformity (discussed in next lecture)
— Kolmogorov—Smirnov test (i /R B & 1& Fe—H K /R 7% T TE)
— chi-square test (x? test, £ /7HE%)
o Autocorrelation Test for independence.

e There are also some theoretical tests without actually
generating any numbers, e.g., spectral test (3&64%).

e Fortunately, the well-known RNGs which are widely used in
simulation softwares and languages have been extensively
tested and validated.
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Random Number Generation » Tests for Random Numbers

e Tests based on generated sequences of numbers.
e Frequency Test for uniformity (discussed in next lecture)
— Kolmogorov—Smirnov test (i /R B & 1& Fe—H K /R 7% T TE)
— chi-square test (x? test, £ /7HE%)
o Autocorrelation Test for independence.

e There are also some theoretical tests without actually
generating any numbers, e.g., spectral test (3&64%).

e Fortunately, the well-known RNGs which are widely used in
simulation softwares and languages have been extensively
tested and validated.

e Be careful when the RNG at hand is not explicitly known or
documented!
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Random Number Generation » Tests for Random Numbers

e Tests based on generated sequences of numbers.
e Frequency Test for uniformity (discussed in next lecture)
— Kolmogorov—Smirnov test (i /R B & 1& Fe—H K /R 7% T TE)
— chi-square test (x? test, £ /7HE%)
o Autocorrelation Test for independence.

e There are also some theoretical tests without actually
generating any numbers, e.g., spectral test (3&64%).

e Fortunately, the well-known RNGs which are widely used in
simulation softwares and languages have been extensively
tested and validated.

e Be careful when the RNG at hand is not explicitly known or
documented!
e Even RNGs that have been used for years in popular
commercial softwares (e.g., Excel, Visual Basic), have been

found to be inadequate (L'Ecuyer 2001]).
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©® Random Variate Generation

(cc

» Inverse-Transform Technique

» Acceptance-Rejection Technique
» Other Ad-Hoc Methods

» Generating Poisson Process

SHEN Haihui

MEM®6810 Modeling and Simulation, Lec 4

Spring 2023 (full-time)
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Random Variate Generation

e Assumption: RNG is available, i.e. we have a sequence of
random numbers (i.e., Unif(0, 1) random variates).

e Goal: Produce random variates from a given probability
distribution (e.g. exponential, Poisson, etc.).
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Random Variate Generation

e Assumption: RNG is available, i.e. we have a sequence of
random numbers (i.e., Unif(0, 1) random variates).

e Goal: Produce random variates from a given probability
distribution (e.g. exponential, Poisson, etc.).

o Widely-used techniques’
e Inverse-transform technique (generic)
 Acceptance-rejection technique (generic)
e Other ad-hoc methods for some specific distributions

TMethods introduced in this lecture are exact; there are also approximation methods such as MCMC.
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Random Variate Generation » Inverse-Transform Technique

e Let F'(x) be the CDF of X, ie., F(z) =P(X < x).
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Random Variate Generation » Inverse-Transform Technique

e Let F'(x) be the CDF of X, ie., F(z) =P(X < x).

................ ELEG) s e L g
: :
| T T
0 o Q| 22 @3 T4
Figure: Continuous Random Variable Figure: Discrete Random Variable
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Random Variate Generation » Inverse-Transform Technique

e Let F'(x) be the CDF of X, ie., F(z) =P(X < x).

................ ELEG) s e L g
: :
0 o Q| 22 @3 T4
Figure: Continuous Random Variable Figure: Discrete Random Variable

e Procedures
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Random Variate Generation » Inverse-Transform Technique

e Let F'(x) be the CDF of X, ie., F(z) =P(X < x).

................ R el B g
: :
0 o Q| 22 @3 T4
Figure: Continuous Random Variable Figure: Discrete Random Variable

e Procedures
@ Generate (as needed) random numbers (on vertical axis).
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Random Variate Generation » Inverse-Transform Technique

e Let F'(x) be the CDF of X, ie., F(z) =P(X < x).

0 EENES 1

Figure: Continuous Random Variable Figure: Discrete Random Variable

e Procedures
@ Generate (as needed) random numbers (on vertical axis).
® Map inversely to points on horizontal axis, which are the
desired random variates from F'(x).

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 19 / 38


https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Inverse-Transform Technique

e The formal definition of inverse function is
Fl(y) =min{z: F(z) >y}, 0<y<l.

................ LLEG) s e L g
v
v
— x T
0 X T Q| 22 X T4
Figure: Continuous Random Variable Figure: Discrete Random Variable
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Random Variate Generation » Inverse-Transform Technique

e The formal definition of inverse function is
Fl(y) =min{z: F(z) >y}, 0<y<l.

e If U ~ Unif(0,1), then F~1(U) has the same distribution as

X, i.e.,
P(F1(U) <z) =P(U < F(x)) = F(2)
................ LLEG) s e L g
F//O X . 5;1 N X T4 :
Figure: Continuous Random Variable Figure: Discrete Random Variable
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Random Variate Generation » Inverse-Transform Technique

e The inverse-transform technique is useful when the CDF is so
simple that its inverse function can be analytically solved or
easily computed.
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Random Variate Generation » Inverse-Transform Technique

e The inverse-transform technique is useful when the CDF is so
simple that its inverse function can be analytically solved or
easily computed.

e |t can be used to sample from various continuous distributions
e uniform
e exponential
e triangular
e Weibull
e Cauchy
e Pareto
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Random Variate Generation » Inverse-Transform Technique

e The inverse-transform technique is useful when the CDF is so
simple that its inverse function can be analytically solved or
easily computed.

e |t can be used to sample from various continuous distributions
e uniform
e exponential
e triangular
e Weibull
e Cauchy
e Pareto

e It can be used to sample from all (in principle) discrete
distributions, e.g.,
o discrete uniform
e geometric
e arbitrary empirical distribution
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Random Variate Generation » Uniform Distribution

e Goal: Generate random variates from X ~ Unif(a, b).
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Random Variate Generation » Uniform Distribution

e Goal: Generate random variates from X ~ Unif(a, b).

e Intuition: Since X =a+ (b—a)U, we just need to:
@ Generate random number u;;
® Output z; = a + (b — a)u; as the required random variates.
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Random Variate Generation » Uniform Distribution

e Goal: Generate random variates from X ~ Unif(a, b).

e Intuition: Since X = a + (b — a)U, we just need to:
@ Generate random number u;;
® Output z; = a + (b — a)u; as the required random variates.

e For X ~ Unif(a, b), the pdf and CDF are

! <z<b 0, z<a,

— e OETE0 pgy = { ez <x<b

f) {0, otherwise, () b=’ ASTS0
L, b <.
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Random Variate Generation » Uniform Distribution

e Goal: Generate random variates from X ~ Unif(a, b).

e Intuition: Since X = a + (b — a)U, we just need to:
@ Generate random number u;;
® Output z; = a + (b — a)u; as the required random variates.

e For X ~ Unif(a, b), the pdf and CDF are

e

r < a,

1
= b—a’ a S €T S b, F _ - _ b
f@) {0, otherwise, () , a<x <D,
b <.

8
|
Q

— o~

e Solve the inverse function of F(z),

Flyy=a+(b-a)y, 0<y<l.
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Random Variate Generation » Uniform Distribution

e Goal: Generate random variates from X ~ Unif(a, b).

e Intuition: Since X = a + (b — a)U, we just need to:

@ Generate random number u;;
® Output z; = a + (b — a)u; as the required random variates.

e For X ~ Unif(a, b), the pdf and CDF are

! <z<b 0, z<a,

— e OETE0 pgy = { ez <x<b

f) {0, otherwise, () b=’ ASTS0
L, b <.

e Solve the inverse function of F(z),

Flyy=a+(b-a)y, 0<y<l.

e So, F"Y(U) = a+ (b — a)U has the same distribution as X.
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Random Variate Generation » Exponential Distribution

e Goal: Generate random variates from X ~ Exp()).

(cc SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 23 / 38


https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Exponential Distribution

e Goal: Generate random variates from X ~ Exp()).

e For X ~ Exp()), the pdf and CDF are
-z
ro= {07 1Y F -

1—e?, >0,
0, x <0,

0, x < 0.
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Random Variate Generation » Exponential Distribution

e Goal: Generate random variates from X ~ Exp()).

e For X ~ Exp()), the pdf and CDF are
de A% >0, 1—e?, >0,
)= { P - {

0, x <0, 0, x < 0.

e Solve the inverse function of F'(x),

1
Fl(y) = —Xln(l -y), O0<y<l.
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Random Variate Generation » Exponential Distribution

Goal: Generate random variates from X ~ Exp(\).

For X ~ Exp(\), the pdf and CDF are
de A% >0, 1—e?, >0,
)= F) - {

0, x <0, 0, x < 0.

Solve the inverse function of F(z),

1
Fl(y) = —Xln(l -y), O0<y<l.

So, F~1(U) = —3In(1 — U) has the same distribution as X.
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Random Variate Generation » Exponential Distribution

e Goal: Generate random variates from X ~ Exp()).

For X ~ Exp(\), the pdf and CDF are
de A% >0, 1—e?, >0,
)= F) - {

0, x <0, 0, x < 0.

Solve the inverse function of F(z),

1
Fl(y) = —Xln(l -y), O0<y<l.

So, F~1(U) = —3In(1 — U) has the same distribution as X.

Remark: 1 — U ~ Unif (0, 1) = —3 In(U) is sufficient.
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Random Variate Generation » Exponential Distribution

e Goal: Generate random variates from X ~ Exp()).

For X ~ Exp(\), the pdf and CDF are
de A% >0, 1—e?, >0,
)= F) - {

0, x <0, 0, x < 0.

Solve the inverse function of F(z),

1
Fl(y) = —Xln(l -y), O0<y<l.

So, F~1(U) = —3In(1 — U) has the same distribution as X.

Remark: 1 — U ~ Unif (0, 1) = —3 In(U) is sufficient.

Numerical test for Exp(1) in Excel.

@ Generate 200 random numbers.
® Obtain 200 random variates via the inverse function.
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Random Variate Generation » Exponential Distribution

fx)
=
g — — ~m
Sl T o 1 ]
g (=R 1
T |
E bbb : Figure:
% . | (a) Empirical histogram of 200
~ A A A A | generated uniform random
R A A ! numbers;
0 02 04 06 08 1 x 0 1 x (b) Theoretical density of
@) () Unif (0, 1);
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Random Variate Generation

» Exponential Distribution
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Figure:

(a) Empirical histogram of 200
generated uniform random
numbers;

(b) Theoretical density of
Unif (0, 1);

(c) Empirical histogram of 200
generated variates from Exp(1);
(d) Theoretical density of
Exp(1).

(from |Banks et al. (2010)))
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Random Variate Generation » Discrete Distribution

e Consider a discrete random variable X taking values 0, 1, 2
with probability 0.5, 0.3 and 0.2.
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Random Variate Generation » Discrete Distribution

e Consider a discrete random variable X taking values 0, 1, 2
with probability 0.5, 0.3 and 0.2.

e The pmf and CDF are

0, z <0,
0.5, =0, 05 0<z<l
. xr
= . = F = ' - '
pl@) =403 w=1 F@) =490 1,0
0.2, x==2,

1, 2 <z
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Random Variate Generation » Discrete Distribution

e Consider a discrete random variable X taking values 0, 1, 2
with probability 0.5, 0.3 and 0.2.

e The pmf and CDF are

0, T <0,
0.5, =0, 05 0<z<l
. xr
= . = F = ! - !
pl@) =403 w=1 F@) =490 1,0
0.2, x==2,

1, 2 <z

e Solve the inverse function. (Recall 7 '(y) == min{z: F'(x) > y}.)

F(x)
1+ —
i
08 —
|
I
|
0.5 $————o
| |
1 2 x
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Random Variate Generation

» Discrete Distribution

e Consider a discrete random variable X taking values 0, 1, 2

with probability 0.5, 0.3 and 0.2.
e The pmf and CDF are

0,
0.5, =0,
0.5,
p(r) =403, z=1 F(z)= 08
0.2, z=2 1. '

z <0,
0<z <1,
1<z <2,
2 <z

e Solve the inverse function. (Recall 7 '(y) == min{z: F'(x) > y}.)

F(x)
1 —
I

0.8 [ —— -1

! F(y) =
05—

| |

1 2 *

[®)BYsA |

SHEN Haihui

MEM®6810 Modeling and Simulation, Lec 4

Spring 2023 (full-time)

0<y<0.5
0.5 <y <038,
0.8 <y<1.
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Random Variate Generation

» Discrete Distribution

e Consider a discrete random variable X taking values 0, 1, 2

with probability 0.5, 0.3 and 0.2.
e The pmf and CDF are

0,
0.5, =0,
0.5,
p(r) =403, z=1 F(z)= 08
0.2, z=2 1. '

z <0,
0<z <1,
1<z <2,
2 <z

e Solve the inverse function. (Recall 7 '(y) == min{z: F'(x) > y}.)

F(x)
T ! 0<y<0.5,
08 — -1
3 F~(y) = 0.5<y <08,
03— 08 <y<l.
l L Try it in Excel.
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Random Variate Generation » Acceptance-Rejection Technique

e Why do we need another method when the inverse-transform
technique is already generic?
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Random Variate Generation » Acceptance-Rejection Technique

e Why do we need another method when the inverse-transform
technique is already generic?

e The CDF of a desired distribution may not have an analytical
form.
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Random Variate Generation » Acceptance-Rejection Technique

e Why do we need another method when the inverse-transform
technique is already generic?
e The CDF of a desired distribution may not have an analytical
form.
e The inverse CDF may not exist in closed form and may be
challenging to evaluate, e.g., beta, gamma, normal, etc.
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Random Variate Generation » Acceptance-Rejection Technique

e Why do we need another method when the inverse-transform
technique is already generic?

e The CDF of a desired distribution may not have an analytical
form.

e The inverse CDF may not exist in closed form and may be
challenging to evaluate, e.g., beta, gamma, normal, etc.

e Although you can solve the inverse transform via numerical
methods anyway, the efficiency may be low.
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Random Variate Generation » Acceptance-Rejection Technique

e Why do we need another method when the inverse-transform
technique is already generic?

e The CDF of a desired distribution may not have an analytical
form.

e The inverse CDF may not exist in closed form and may be
challenging to evaluate, e.g., beta, gamma, normal, etc.

e Although you can solve the inverse transform via numerical
methods anyway, the efficiency may be low.

e Acceptance-rejection technique is also useful for generating a
non-stationary Poisson process (more details later).

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 26 / 38


https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » A Naive Example

e Goal: Generate random variates from X ~ Unif(1/4, 1) using
acceptance-rejection technique.
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Random Variate Generation » A Naive Example

e Goal: Generate random variates from X ~ Unif(1/4, 1) using
acceptance-rejection technique.

@ Generate a random number u (from U ~ Unif(0, 1)).

@® If uw > 1/4, accept u, output u as the desired random variate;
if u < 1/4, reject u, and return to Step 1.

© |If another Unif(1/4, 1) random variate is needed, repeat the
procedure from Step 1; stop otherwise.
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Random Variate Generation » A Naive Example

e Goal: Generate random variates from X ~ Unif(1/4, 1) using
acceptance-rejection technique.

@ Generate a random number u (from U ~ Unif(0, 1)).

@® If uw > 1/4, accept u, output u as the desired random variate;
if u < 1/4, reject u, and return to Step 1.

© |If another Unif(1/4, 1) random variate is needed, repeat the
procedure from Step 1; stop otherwise.

e Important Observation 1: To produce one random variate
using A-R technique, one may need to generate multiple
random numbers.
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Random Variate Generation » A Naive Example

e Goal: Generate random variates from X ~ Unif(1/4, 1) using
acceptance-rejection technique.

@ Generate a random number u (from U ~ Unif(0, 1)).

@® If uw > 1/4, accept u, output u as the desired random variate;
if u < 1/4, reject u, and return to Step 1.

© |If another Unif(1/4, 1) random variate is needed, repeat the
procedure from Step 1; stop otherwise.

e Important Observation 1: To produce one random variate
using A-R technique, one may need to generate multiple
random numbers.

e Whereas there exists a one-to-one mapping for the
inverse-transform method.
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Random Variate Generation » A Naive Example

e Important Observation 2: The accepted values of U are
conditioned values.

e [ itself does not have the desired distribution.
e U conditioned on the event {U > 1/4} does!
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Random Variate Generation » A Naive Example

e Important Observation 2: The accepted values of U are
conditioned values.

e U itself does not have the desired distribution.
e U conditioned on the event {U > 1/4} does!

e For1/4 <z <1,

P{U<zandU >1/4} x—-1/4
P{U > 1/4} - 3/4

which is exactly the desired CDF of X ~ Unif(1/4,1).

P{U < z|U > 1/4} =
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Random Variate Generation » Bounded Support

e Suppose we want to generate random variates from X, whose
density f(x) has support [a, b] and is upper bounded by M.
M

— f(2)
— M

0
a b

Figure: Bounded Support (original image from ZHANG Xiaowei)
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Random Variate Generation » Bounded Support

e Suppose we want to generate random variates from X, whose
density f(x) has support [a, b] and is upper bounded by M.
M

— f(2)
M

0
a b

Figure: Bounded Support (original image from ZHANG Xiaowei)

@ Generate random variate pairs (y1, 21), (y2, 22), ..., from
uniform{(y, z) :a <y <b, 0<z< M}.
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Random Variate Generation » Bounded Support

e Suppose we want to generate random variates from X, whose
density f(x) has support [a, b] and is upper bounded by M.
M

— f(2)
M

0

a b
Figure: Bounded Support (original image from ZHANG Xiaowei)

@ Generate random variate pairs (y1, 21), (y2, 22), ..., from
uniform{(y, z) :a <y <b, 0<z< M}.
e y; from Y ~ Unif(a, b), z; from Z ~ Unif (0, M)
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Random Variate Generation » Bounded Support

e Suppose we want to generate random variates from X, whose
density f(x) has support [a, b] and is upper bounded by M.
M

— f(2)
— M

accept reject

0

a b
Figure: Bounded Support (original image from ZHANG Xiaowei)

@ Generate random variate pairs (y1, 21), (y2, 22), ..., from
uniform{(y, z) :a <y <b, 0<z< M}.
e y; from Y ~ Unif(a, b), z; from Z ~ Unif (0, M)

® Accept the pair if z; < f(y;) and output y; as random variate
from X with density f(z).
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Random Variate Generation » Bounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).

e (Y, Z) ~uniform{(y,2) :a <y <b, 0<z< M}
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Random Variate Generation » Bounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).

e (Y, Z) ~uniform{(y,2) :a <y <b, 0<z< M}

Proof.

P{Y <z|Z < f(Y)}
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Random Variate Generation » Bounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).

e (Y, Z) ~uniform{(y,2) :a <y <b, 0<z< M}

Proof.

P{Y <z|Z < f(Y)} = P{E{SZ;:ZJ;YJ;%Y)}
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Random Variate Generation » Bounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).

e (Y, Z) ~uniform{(y,2) :a <y <b, 0<z< M}

]P’{Y <z Z< f(Y)}
P{zZ < f(Y)}

fz ff(y) fv. z(y, z)dzdy

LI py 2y, 2)dzdy

PY <zlZz < f(Y)} =
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Random Variate Generation » Bounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).

e (Y, Z) ~uniform{(y,2) :a <y <b, 0<z< M}

Proof.
P{Y <z, Z < f(Y)}
]P’{Z<f( )}

f(y) ote: fy,z(y, z) = m
fa fo fY,Z(y-Z)dZdy

PY <zlZz < f(Y)} =
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Random Variate Generation » Bounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).

e (Y, Z) ~uniform{(y,2) :a <y <b, 0<z< M}

Proof.
P{Y <z,Z < f(Y)}
P{z <f(YV)}

e JI9 py 2(y, 2)dzdy
- fb fof(y> fy. z(y, z)dzdy
f ff(y) o= a)Mdzdy
f ff(y) = a)MdZdy

P{Y <o|Z < f(Y)} =

I
(b—a)M

Note: fy z(y,z) =
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Random Variate Generation » Bounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).

e (Y, Z) ~uniform{(y,2) :a <y <b, 0<z< M}

Proof.

P{Y <=,Z < f(Y)}
B(Z < f(V)}

— f: f()f<y> fr. z(y, z)dzdy
fb fof(y> fy. z(y, z)dzdy

f x

f 5 @) = a)Mdzdy N ff(y) dzdy
f ff(y) — a)MdZdy f ff(y dzdy

P{Y <o|Z < f(Y)} =

I
(b—a)M

Note: fy z(y,z) =
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Random Variate Generation » Bounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).

e (Y, Z) ~uniform{(y,2) :a <y <b, 0<z< M}

Proof.
Y sz <00} = P{Y];»{Szmézf?y];(}Y)}
_ f: fof<y> fy,z(y, z)dzdy 1

Note: fy z(y,z) =

J2 I v 2y, 2)dzdy b-a)M

f ff(y) (b a)MdZdy fw ff(y) dzdy
f ff(y) (b a)MdZdy f ff(y dzdy
AV
‘*ﬁﬂw@
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Random Variate Generation » Bounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).

e (Y, Z) ~uniform{(y,2) :a <y <b, 0<z< M}

Proof.
Y sz <00} = P{Y];»{Szmézf?y];(}Y)}
_ f: fof<y> fy,z(y, z)dzdy 1

Note: fy z(y,z) =

J2 I v 2y, 2)dzdy b-a)M

f ff(y) (b a)MdZdy fw ff(y) dzdy

f ff(y) — a)MdZdy f ff(y dzdy
_ Jo Ty P{X <a}

Ji F(y)dy 1
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Random Variate Generation » Bounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).

e (Y, Z) ~uniform{(y,2) :a <y <b, 0<z< M}

Proof.
Py <=z Z<f(Y)}
Y <ol <J} = =57 7o)
fz f()f<y> vaZ(y' z)dzdy ‘ 1
— Ja N . Y z2) = 73— 7
fb fof(y> fy,z(y, z)dzdy ote: fr.z(y.2) (b—a)M
f ff(y) (b a)MdZdy fw ff(y) dzdy
f ff(y) = a)MdZdy f ff(y dzdy
Iy PIX <2} oy L

[Py L
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Random Variate Generation » Bounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).

e (Y, Z) ~uniform{(y,2) :a <y <b, 0<z< M}

Proof.
Py <=z Z<f(Y)}
Y <ol <J} = =57 7o)
fz ff(y) fr.z y z)dzdy i 1
Note: Y'2)= 72— ~77
f fof(y> fy. z(y, z)dzdy ote: fr.z(1.7) (b—a)M
f ff(y) (b a)MdZdy fﬂc ff(y) dzdy
f ff(y) = a)MdZdy f ff(y dzdy
Iy PIX <2} oy L

[Py L

e The acceptance rate is P{Z < f(Y)} = m
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Random Variate Generation » Beta from Uniform

e Goal: Generate random variates from Beta(c, 3), where the

density is f(x) = %, x € [0,1].
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Random Variate Generation » Beta from Uniform

e Goal: Generate random variates from Beta(c, 3), where the
a:o"l(l—x)ﬁ’l

density is f(SC) = W’ S [0, ].]
2.5 P
a=58=1—0o
a=1pB=3 —
1l 0=2p8=2 —
0=2p8=5——
15 F
kS]
(=8
1F
0.5
0 H
0 0.2 0.4 0.6 0.8 1
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Random Variate Generation » Beta from Uniform

e Goal: Generate random variates from Beta(c, 3), where the
a:o"l(l—a:)ﬁ’l

density is f(z) = 55— = €[0,1].
25 w=pm05
a=5pB=1 —
a=1pB=3 —
5L a=2.p=2 —
a=2,B=5 —
15 F
kS]
(=8
1F
0.5
0 ol
0 0.2 0.4 0.6 0.8 1

e If a>1and B >1, then f(z) is maximized at = = —af'f_ng
(afl)a_l(ﬂfl)ﬁ_l

and the maximum is M = (@ t=2)"F 2B(a f)"
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Random Variate Generation » Beta from Uniform

e Goal: Generate random variates from Beta(c, 3), where the
a:o"l(l—a:)ﬁ’l

density is f(z) = 55— = €[0,1].
25 a=p=05 —
a=5p=1—0
a=1pB=3 —
5L a=2p=2 —
a=2,B=5 —
15 F
kS]
(=8
1}
0.5
0 : .
0 0.2 0.4 0.6 0.8 1

e If a>1and B >1, then f(z) is maximized at = = —af'f_ng
(afl)a_l(ﬂfl)ﬁ_l
(atB-2)7772B(a, B)"

e The acceptance rate is (b_i)M = (I—E)M = ﬁ

and the maximum is M =
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Random Variate Generation » Unbounded Support

¢ Generate random variates from X, whose density f(x) is
upper bounded by Mg(x), where g(x) is instrumental density.

— f(2)
— My(z)

Figure: Unbounded Support (original image from [ZHANG Xiaowei)
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Random Variate Generation » Unbounded Support

¢ Generate random variates from X, whose density f(x) is
upper bounded by Mg(x), where g(x) is instrumental density.

— f(2)
— My(z)

Figure: Unbounded Support (original image from [ZHANG Xiaowei)

@ Generate random variate pairs (y1, 21), (y2, 22), ..., from
uniform{(y, z) : y € support of g(-), 0 < z < Mg(y)}.
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Random Variate Generation » Unbounded Support

¢ Generate random variates from X, whose density f(x) is
upper bounded by Mg(x), where g(x) is instrumental density.

— f(2)
— My(z)

Figure: Unbounded Support (original image from [ZHANG Xiaowei)

@ Generate random variate pairs (y1, 21), (y2, 22), ..., from
uniform{(y, z) : y € support of g(-), 0 < z < Mg(y)}.

o y; fromY ~ g(-), z from Z ~ Unif(0, Mg(y;)) (why?)
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Random Variate Generation » Unbounded Support

¢ Generate random variates from X, whose density f(x) is
upper bounded by Mg(x), where g(x) is instrumental density.

— f(2)
— My(z)

reject

accept

Figure: Unbounded Support (original image from [ZHANG Xiaowei)
@ Generate random variate pairs (y1, 21), (y2, 22), ..., from
uniform{(y, z) : y € support of g(-), 0 < z < Mg(y)}.
o y; fromY ~ g(-), z from Z ~ Unif(0, Mg(y;)) (why?)
® Accept the pair if z; < f(y;) and output y; as random variate
from X with density f(z).
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Random Variate Generation » Unbounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z)
o Let © denote {(y, 2) : y € support of g(-)

e (Y, Z) ~ uniform ©.

L 0<2< Mg(y)}
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Random Variate Generation » Unbounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z)
o Let © denote {(y, 2) : y € support of g(-)

e (Y, Z) ~ uniform ©.

L 0<2< Mg(y)}

Proof.

PY <z|Z < f(Y)}
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Random Variate Generation » Unbounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z)
o Let © denote {(y, 2) : y € support of g(-)
e (Y, Z) ~ uniform ©.

L 0<2< Mg(y)}

Proof.

P{Y <z|Z < f(Y)} = P{EEP{SZZZ;YJ;(}Y)}
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Random Variate Generation » Unbounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).
e Let © denote {(y, 2) : y € support of g(-), 0 <z < Mg(y)}.
e (Y, Z) ~ uniform ©.

Proof.

P{Y <ol < f(V)} = DY S22 < JV)}

P{Z < [(Y)}
P S By gy, 2)dedy
LY fy 2y, 2)dady

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time) 33 /38


https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Unbounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).
e Let © denote {(y, 2) : y € support of g(-), 0 <z < Mg(y)}.
e (Y, Z) ~ uniform ©.
Proof.
P{Y <z Z < f(Y)}
P{Z < f(Y)}
I JI9 v 2(y,
Y f sy, 2)dzdy

P{Y < 2|Z < f(Y)} =

z)dzd
Jdzdy Note: fy z(y,z) = !

© area
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Random Variate Generation » Unbounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).
e Let © denote {(y, 2) : y € support of g(-), 0 <z < Mg(y)}.
e (Y, Z) ~ uniform ©.

Proof.
P{Y <z, Z < f(Y)}

P{Y < 2|Z < f(Y)} =

P{Z < f(Y)}
I 1O fy 2(y, z)dzdy 1
7 (y) Note: fv.z(y, 2) = © area
f_ 5 fY z(y, z)dzdy
f— f(y) @ area dZdy

f ff(y) @ area dZdy
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Random Variate Generation » Unbounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).
9(), 0

o Let © denote {(y, 2) : y € support of g(-), z < Mg(y)}.
e (Y, Z) ~ uniform ©.
Proof.
Py <a,Z<f(Y)}
PIY <212 <TI0} = =57 S hy
I TW) £y 2(y, 2)dzdy 1

Note: fy z(y,z) =

S fY 2(y, 2)dzdy
Y sindzdy [T Y dedy
f ff(y) @ area dZdy fjooo fOf(y) dZdy

© area
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Random Variate Generation » Unbounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).
e Let © denote {(y, 2) : y € support of g(-), 0 <z < Mg(y)}.
e (Y, Z) ~ uniform ©.

Proof.
CP{Y <a,Z< f(Y)}
P{Y <z|Z < f(Y)} = Pz < T
f 15 IO by 4(y, 2)dzdy 1
Note: Y, z) =
f_ fof(y) fy. z(y, z)dzdy ote: fr,z(y.2) O area
f_ f(y) . areadZdy ffoo fof(y) dZdy
g T sidzdy [ [V dady
_ I
B m
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Random Variate Generation » Unbounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).
e Let © denote {(y, 2) : y € support of g(-), 0 <z < Mg(y)}.
e (Y, Z) ~ uniform ©.

Proof.
CP{Y <a,Z< f(Y)}
P{Y <z|Z < f(Y)} = Pz < T
f 15 IO by 4(y, 2)dzdy 1
Note: Y, z) =
f_ fof(y) fy. z(y, z)dzdy ote: fr,z(y.2) O area
f_ f(y) . areadZdy ffoo fof(y) dZdy

f ff(y) @ area dZdy fjooo fOf(y) dZdy
ST fWdy PX < a2}
7 Fly)dy 1
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Random Variate Generation » Unbounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same
distribution as X, i.e., having density f(z).
e Let © denote {(y, 2) : y € support of g(-), 0 <z < Mg(y)}.
e (Y, Z) ~ uniform ©.

Proof.

PlY <z, Z < f(Y

z fy)

dzd

e fof( )fy A, 2 Note: fy z(y,2z) = !
f_ I3 fv,z(y, z)dzdy O area
f_ f(y) @areadZdy f ff(y) dZdy
f ff(y) e s dedy f f F®) dzdy

T f(y)d
I | y_P{ng}:P{ng}_ .

T fydy 1
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Random Variate Generation

» Unbounded Support

¢ Y conditioned on the event {Z < f(Y)} has the same

distribution as X, i.e., having density f(z
e Let © denote {(y, 2) : y € support of

e (Y, Z) ~ uniform ©.
Proof.
PY < .2 < f(V))
P{Z < f(Y)}
Y By 2(y, 2)dady

P{Y < 2|Z < f(Y)} =

(
9

h
)-
(1), 0<2< Mg(y)}.

T sy ) G
I f(y) siodedy  [7 ff(y) dzdy
e 2 shadady [, [ dady
_ LS D _PX <) pey oy m
JZo fy)dy 1
e The acceptance rate is
P{Z < fV)} = oo = I Mlg(y)dy M 7, 1 wdy — -
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Random Variate Generation » Normal from Cauchy

e Goal: Generate random variates from N (0, 1), where the

22
density is f(x) = \/%677, x € (—00,00).
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Random Variate Generation » Normal from Cauchy

e Goal: Generate random variates from N (0, 1), where the

22
density is f(x) = \/%677, x € (—00,00).

e Use Cauchy(0, 1) density as instrumental density, which is
g(x) = 7r(1-1m 7T E (—00, ).
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Random Variate Generation » Normal from Cauchy

e Goal: Generate random variates from N (0, 1), where the
x2
density is f(x) = \/%677, x € (—00,00).
e Use Cauchy(0, 1) density as instrumental density, which is
g(x) = W(liz 7T E (—o00, 00).

0.5 T T
— Normal

0.4r -- Cauchy

0.3

o

o
0.2}

0.1}

0.0k===
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Random Variate Generation » Normal from Cauchy

e Goal: Generate random variates from N (0, 1), where the
22
density is f(x) = \/%677, x € (—00,00).
e Use Cauchy(0, 1) density as instrumental density, which is
g(x) = m x € (—00,00).

0.5 T T
— Normal

4+
0 -~ Cauchy
. 0.3F
©
o
0.2F

0.1}

0.0k===

e It is easy to see that % = /51 +2a?)e” 7 is maximized at

x = +1 and the maximum is ,/27“, which is the required M.
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Random Variate Generation » Normal from Cauchy

e Goal: Generate random variates from N (0, 1), where the
22
density is f(x) = \/%677, x € (—00,00).
e Use Cauchy(0, 1) density as instrumental density, which is
g(x) = m x € (—00,00).

0.5 T T
— Normal

4+
0 -~ Cauchy
. 0.3F
©
o
0.2F

0.1r

0.0k===

e It is easy to see that % = /51 +2a?)e” 7 is maximized at

x = +1 and the maximum is ,/2{, which is the required M.

e The acceptance rate is ﬁ = /3. ~ 0.6577.
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Random Variate Generation » Other Ad-Hoc Methods

o Box-Muller method for (0, 1) random variates:
@ Generate u; and us independently from Unif(0, 1).

@ Let 2y = V/—2Inwu cos(2mus) and 2o = /—2Inug sin(2muy).
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Random Variate Generation » Other Ad-Hoc Methods

o Box-Muller method for (0, 1) random variates:
@ Generate u; and us independently from Unif(0, 1).

@ Let 2y = V/—2Inwu cos(2mus) and 2o = /—2Inug sin(2muy).

e 21 and 2, are random variates from A/(0, 1) (independent).
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Random Variate Generation » Other Ad-Hoc Methods

o Box-Muller method for (0, 1) random variates:
@ Generate u; and us independently from Unif(0, 1).

@ Let 2y = V/—2Inwu cos(2mus) and 2o = /—2Inug sin(2muy).

e 21 and 2, are random variates from A/(0, 1) (independent).

e Intuition:
« For two independent N(0,1) RVs
Z1 and Z2,
Z3,7Z3 ~ X1, 23 + Z3 ~ X3.

o X ~Exp(1/2) <= X ~x3.

e —2Inwu, is a random variate from
Exp(1/2) (and thus x3).

e The angle is distributed uniformly
around the circle.

[@®)BY-sA | SHEN Haihui MEM®6810 Modeling and Simulation, Lec 4 Spring 2023 (full-time)


https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://en.wikipedia.org/wiki/File:Box-Muller_transform_visualisation.svg
https://commons.wikimedia.org/wiki/User:Cmglee
https://creativecommons.org/licenses/by/3.0/deed.en
https://shenhaihui.github.io/static/Box-Muller.svg
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

Random Variate Generation » Other Ad-Hoc Methods

o Box-Muller method for (0, 1) random variates:
@ Generate u; and us independently from Unif(0, 1).

@ Let 2y = V/—2Inwu cos(2mus) and 2o = /—2Inug sin(2muy).

e 21 and 2, are random variates from A/(0, 1) (independent).

e Intuition:
« For two independent N(0,1) RVs
Z1 and Z2,
Z3,7Z3 ~ X1, 23 + Z3 ~ X3.

o X ~Exp(1/2) <= X ~x3.

e —2Inwuq is a random variate from
Exp(1/2) (and thus x3).

e The angle is distributed uniformly
around the circle.

e Rigorous proof.
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Random Variate Generation » Other Ad-Hoc Methods

o Box-Muller method for (0, 1) random variates:
@ Generate u; and us independently from Unif(0, 1).

@ Let 2y = V/—2Inwu cos(2mus) and 2o = /—2Inug sin(2muy).

e 21 and 2, are random variates from A/(0, 1) (independent).

e Intuition:

* For two independent N'(0,1) RVs 2
Z1 and Z2,

23,25 ~ XY, ZY 4 25~ X5

asrme '%.

Joapentl e .y,

02 (0),2:(+)

o X ~Exp(1/2) <= X ~x3.

e —2Inw, is a random variate from maEmRIEEaE: ,.
Exp(1/2) (and thus x3). R RSk aRi

e The angle is distributed uniformly 2 V :
around the circle.

40 1 2
w1 (0), z1 (+)

Figure: Box—Muller Method Visualisation
. ((image] by [Cmalee| / [CC BY 3.0)
* Rigorous proof.
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Random Variate I » Other Ad-Hoc M

Figure: Relationships Among 35 Figure: Relationships Among 76 Distributions
Distributions (from [Song (2005)) (from |Leemis & McQueston (2005))
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Random Variate Generation » Generating Poisson Process

¢ Poisson process with rate \: Interarrival time distribution is
exponential with rate A (or mean 1/)), and

N(t+ h) — N(t) ~ Poisson(Ah). (same as N(h))
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Random Variate Generation » Generating Poisson Process

e Poisson process with rate A: Interarrival time distribution is
exponential with rate A (or mean 1/)), and

N(t+ h) — N(t) ~ Poisson(Ah). (same as N(h))

e To generate Poisson process with rate A, one only need to
generate iid Exp(A) random variates.

e s;, the arrival time of the ith arrival, satisfies
S; = Si—1 — (1//\) ln(ui), 1= 1, 2,....
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Random Variate Generation » Generating Poisson Process

e Poisson process with rate A: Interarrival time distribution is
exponential with rate A (or mean 1/)), and

N(t+ h) — N(t) ~ Poisson(Ah). (same as N(h))

e To generate Poisson process with rate A, one only need to
generate iid Exp(A) random variates.

e s;, the arrival time of the ith arrival, satisfies
s$i=8i—1— (/M) In(w;), i=1,2,....
¢ Nonhomogeneous Poisson process with rate (intensity)
function A(t):
N(t+ h) — N(t) ~ Poisson(m(t + h) — m(t)),
where m(t) = [J A(s)ds.
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Random Variate Generation » Generating Poisson Process

e To generate nonhomogeneous Poisson process with rate
function A(t), one can use the acceptance-rejection method
(which is also called thinning in this context).
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Random Variate Generation » Generating Poisson Process

e To generate nonhomogeneous Poisson process with rate
function A(t), one can use the acceptance-rejection method
(which is also called thinning in this context).

e |dea behind thinning:
o Generate a stationary Poisson arrival process at the fastest rate
A" = max; A\(t).
e But “accept” only a portion of arrivals, thinning out just
enough to get the desired time-varying rate.
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Random Variate Generation » Generating Poisson Process

e To generate nonhomogeneous Poisson process with rate
function A(t), one can use the acceptance-rejection method
(which is also called thinning in this context).

e |dea behind thinning:

o Generate a stationary Poisson arrival process at the fastest rate
A" = max; A\(t).

e But “accept” only a portion of arrivals, thinning out just
enough to get the desired time-varying rate.

e Algorithm:
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Random Variate Generation » Generating Poisson Process

e To generate nonhomogeneous Poisson process with rate
function A(t), one can use the acceptance-rejection method
(which is also called thinning in this context).

e |dea behind thinning:

o Generate a stationary Poisson arrival process at the fastest rate
A" = max; A\(t).

e But “accept” only a portion of arrivals, thinning out just
enough to get the desired time-varying rate.

e Algorithm:
@ Sett=0andi=1.
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Random Variate Generation » Generating Poisson Process

e To generate nonhomogeneous Poisson process with rate
function A(t), one can use the acceptance-rejection method
(which is also called thinning in this context).

e |dea behind thinning:

o Generate a stationary Poisson arrival process at the fastest rate
A" = max; A\(t).

e But “accept” only a portion of arrivals, thinning out just
enough to get the desired time-varying rate.

e Algorithm:
@ Sett=0andi=1.

® Generate = from Exp(\*), and let ¢ + ¢ + x (this is the arrival
time of the stationary Poisson process with rate \*).
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Random Variate Generation » Generating Poisson Process

e To generate nonhomogeneous Poisson process with rate
function A(t), one can use the acceptance-rejection method
(which is also called thinning in this context).

e |dea behind thinning:
o Generate a stationary Poisson arrival process at the fastest rate
A" = max; A\(t).
e But “accept” only a portion of arrivals, thinning out just
enough to get the desired time-varying rate.

e Algorithm:
@ Sett=0andi=1.
® Generate = from Exp(\*), and let ¢ + ¢ + x (this is the arrival
time of the stationary Poisson process with rate \*).
© Generate random number u (from Unif(0, 1)).
If w < A(t)/A*, then s; =t and i < i + 1.
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Random Variate Generation » Generating Poisson Process

e To generate nonhomogeneous Poisson process with rate
function A(t), one can use the acceptance-rejection method
(which is also called thinning in this context).

e |dea behind thinning:
o Generate a stationary Poisson arrival process at the fastest rate
A" = max; A\(t).
e But “accept” only a portion of arrivals, thinning out just
enough to get the desired time-varying rate.

e Algorithm:
@ Sett=0andi=1.
® Generate = from Exp(\*), and let ¢ + ¢ + x (this is the arrival
time of the stationary Poisson process with rate \*).
© Generate random number u (from Unif(0, 1)).
If w < A(t)/A*, then s; =t and i < i + 1.
O Go to Step 2.
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